
College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 7MCP
Assume you have n moles of an ideal gas initially at a volume V. Along which process will the most work be done by the gas on its surroundings as it expands to a volume of 2V?
- A. An isobaric expansion
- B. An isothermal expansion
- C. An adiabatic expansion
- D. The work done by the gas is the same for all three processes.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Passage Problems
Laptop computers are equipped with accelerometers that sense when
the device is dropped and then put the hard drive into a protective mode.
Your computer geek friend has written a program that reads the accel-
erometer and calculates the laptop's apparent weight. You're amusing
yourself with this program on a long plane flight. Your laptop weighs
just 5 pounds, and for a long time that's what the program reports. But
then the "Fasten Seatbelt" light comes on as the plane encounters turbu-
lence. Figure 4.27 shows the readings for the laptop's apparent weight
over a 12-second interval that includes the start of the turbulence.
76. At the first sign of turbulence,
the plane's acceleration
a. is upward.
b. is downward.
c. is impossible to tell from
the graph.
77. The plane's vertical ac-
celeration has its greatest
magnitude
a. during interval B.
b. during interval C.
c. during interval D.
78. During interval C, you can
conclude for certain that the
plane is
Apparent…
If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other
If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).
Chapter 15 Solutions
College Physics (10th Edition)
Ch. 15 - In the ideal-gas equation could you give the...Ch. 15 - True or false? Equal masses of two different gases...Ch. 15 - How does evaporation of perspiration from your...Ch. 15 - The ideal-gas law is sometimes written in the form...Ch. 15 - (a) If you double the absolute temperature of an...Ch. 15 - Chemical reaction rates slow down as the...Ch. 15 - True or false? When two ideal gases are mixed,...Ch. 15 - Is it possible for a gas to expand and lose energy...Ch. 15 - The gas inside a balloon will always have a...Ch. 15 - When a gas expands adiabatically, it does work on...
Ch. 15 - Since Cv is defined with specific reference to a...Ch. 15 - The ratio y found in Equations 15.22 and 15.23...Ch. 15 - Prob. 1MCPCh. 15 - Prob. 2MCPCh. 15 - Prob. 3MCPCh. 15 - Prob. 4MCPCh. 15 - Prob. 5MCPCh. 15 - Prob. 6MCPCh. 15 - Assume you have n moles of an ideal gas initially...Ch. 15 - The formula U = nCvT for the change in the...Ch. 15 - For the process shown in the pV diagram in Figure...Ch. 15 - Prob. 10MCPCh. 15 - The gas shown in Figure 15.29 is in a completely...Ch. 15 - Prob. 12MCPCh. 15 - A cylindrical tank has a tight-fitting piston that...Ch. 15 - Prob. 2PCh. 15 - A 3.00 L tank contains air at 3.00 atm and 20.0C....Ch. 15 - A 20.0 L tank contains 0.225 kg of helium at...Ch. 15 - A room with dimensions 7.00 m by 8.00 m by 2.50 m...Ch. 15 - Three moles of an ideal gas are in a rigid cubical...Ch. 15 - A large cylindrical tank contains 0.750 m3 of...Ch. 15 - A 1.0 L canister contains 0.2 mole of helium gas....Ch. 15 - The gas inside a balloon will always have a...Ch. 15 - Prob. 10PCh. 15 - A diver observes a bubble of air rising from the...Ch. 15 - At an altitude of 11,000 m (a typical cruising...Ch. 15 - If a certain amount of ideal gas occupies a volume...Ch. 15 - Calculate the volume of 1.00 mol of liquid water...Ch. 15 - What volume does 2 mol of hydrogen gas (H2) occupy...Ch. 15 - The atmosphere of the planet Mars is 95.3% carbon...Ch. 15 - Find the mass of a single sulfur (S) atom and an...Ch. 15 - Prob. 18PCh. 15 - In the air we breathe at 72F and 1.0 atm pressure,...Ch. 15 - We have two equal-size boxes. A and B. Each box...Ch. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - A container of helium gas is heated until the...Ch. 15 - If 5 g of liquid helium is converted into a gas at...Ch. 15 - At what temperature is the root-mean-square speed...Ch. 15 - Where is the hydrogen? The average temperature of...Ch. 15 - Prob. 27PCh. 15 - STP. The conditions of standard temperature and...Ch. 15 - Prob. 29PCh. 15 - (a) How much heat does it take to increase the...Ch. 15 - (a) If you supply 1850 J of heat to 2.25 moles of...Ch. 15 - Suppose 100 J of heat flows into a diatomic ideal...Ch. 15 - Perfectly rigid containers each hold n moles of...Ch. 15 - Assume that the gases in this problem can be...Ch. 15 - A metal cylinder with rigid walls contains 2.50...Ch. 15 - A gas under a constant pressure of 1.50 105 Pa...Ch. 15 - Two moles of an ideal gas are heated at constant...Ch. 15 - Three moles of an ideal monatomic gas expand at a...Ch. 15 - Prob. 39PCh. 15 - Prob. 40PCh. 15 - A gas in a cylinder expands from a volume of 0.110...Ch. 15 - A gas in a cylinder is held at a constant pressure...Ch. 15 - Five moles of an ideal monatomic gas with an...Ch. 15 - When a system is taken from state a to state b in...Ch. 15 - An ideal gas expands while the pressure is Kept...Ch. 15 - You are keeping 1.75 moles of an ideal gas in a...Ch. 15 - Prob. 47PCh. 15 - A cylinder with a movable piston contains 3.00 mol...Ch. 15 - Figure 15.32 show a pV diagram for an ideal gas in...Ch. 15 - Figure 15.33 shows a pV diagram for an ideal gas...Ch. 15 - The pV diagram in Figure 15.34 shows a process abc...Ch. 15 - A volume of air (assumed to be an ideal gas) is...Ch. 15 - In the process illustrated by the pV diagram in...Ch. 15 - A cylinder contains 0.250 mol of carbon dioxide...Ch. 15 - Heating air in the lungs. Human lung capacity...Ch. 15 - The graph in Figure 15.37 shows a pV diagram for...Ch. 15 - An ideal gas at 4.00 atm and 350 K is permitted to...Ch. 15 - An experimenter adds 970 J of heat to 1.75 mol of...Ch. 15 - Heat Q flows into a monatomic ideal gas, and the...Ch. 15 - A player bounces a basketball on the floor,...Ch. 15 - In the pV diagram shown in Figure 15.38, 85.0 J of...Ch. 15 - Modern vacuum pumps make it easy to attain...Ch. 15 - Prob. 63GPCh. 15 - The effect of altitude on the lungs. (a) Calculate...Ch. 15 - (a) Calculate the mass of nitrogen present in a...Ch. 15 - An automobile tire has a volume of 0.0150 m3 on a...Ch. 15 - A student in a physics lab course has the task of...Ch. 15 - Prob. 68GPCh. 15 - Atmosphere of Titan. Titan, the largest satellite...Ch. 15 - Helium gas expands slowly to twice its original...Ch. 15 - A cylinder with a piston contains 0.250 mol of...Ch. 15 - You blow up a spherical balloon to a diameter of...Ch. 15 - A bicyclist uses a tire pump whose cylinder is...Ch. 15 - The bends. If deep-sea divers rise to the surface...Ch. 15 - 75. Figure 15.39 shows a pV diagram for 0.0040...Ch. 15 - Figure 15.40 Problem 76. The graph in Figure 15.40...Ch. 15 - A flask with a volume of 1.50 L, provided with a...Ch. 15 - Initially at a temperature of 80.0C, 0.28 m3 of...Ch. 15 - In a cylinder, 4.00 mol of helium initially at...Ch. 15 - Starting with 2.50 mol of N2 gas (assumed to be...Ch. 15 - Insulating windows. One way to improve insulation...Ch. 15 - Estimate the ratio of the thermal conductivity of...Ch. 15 - The rate of effusionthat is, the leakage of a gas...Ch. 15 - Prob. 84PPCh. 15 - In another test, the gas is put into a cylinder...Ch. 15 - You have a cylinder that contains 500 L of the gas...Ch. 15 - In a hospital, pure oxygen may be delivered at 50...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Using Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forwardHo propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward
- 16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward64. Two springs have the same unstretched length but different spring constants, k₁ and k₂. (a) If they're connected side by side and stretched a distance x, as shown in Fig. 4.24a, show that the force exerted by the combination is (k₁ + k₂)x. (b) If they're con- nected end to end (Fig. 4.24b) and the combination is stretched a distance x, show that they exert a force k₁k2x/(k₁ + k₂). www (a) FIGURE 4.24 Problem 65 www (b)arrow_forward
- 65. Although we usually write Newton's second law for one-dimensional motion in the form F =ma, which holds when mass is constant, d(mv) a more fundamental version is F = . Consider an object dt whose mass is changing, and use the product rule for derivatives to show that Newton's law then takes the form F dm = ma + v dtarrow_forwardIf a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?arrow_forwardConsider a single square loop of wire of area A carrying a current I in a uniform magnetic field of strength B. The field is pointing directly up the page in the plane of the page. The loop is oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the normal vector for the loop is always in the plane of the page!). In the illustrations below the magnetic field is shown in red and the current through the current loop is shown in blue. The loop starts out in orientation (i) and rotates clockwise, through orientations (ii) through (viii) before returning to (i). (i) Ø I N - - I N - (iii) (iv) (v) (vii) (viii) a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector μ of the current loop and indicate whether the torque on the dipole due to the magnetic field is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the loop experience the maximum magnitude of torque? [Hint: Use the…arrow_forward
- Please help with calculating the impusle, thanks! Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse: 1.Measure the weight of the balls and determine their mass. Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Secondarrow_forward5. Three blocks, each with mass m, are connected by strings and are pulled to the right along the surface of a frictionless table with a constant force of magnitude F. The tensions in the strings connecting the masses are T1 and T2 as shown. m T1 T2 F m m How does the magnitude of tension T₁ compare to F? A) T₁ = F B) T₁ = (1/2)F C) T₁ = (1/3)F D) T₁ = 2F E) T₁ = 3Farrow_forwardUsing Coulombs Law, what is the magnitude of the electrical force between two protons located 1 meter apart from each other in Newtons?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY