(a)
Interpretation:
The number of moles of the indicated ion present in the given solution is to be calculated.
Concept Introduction:
The
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 49QAP
The number of moles of
Explanation of Solution
The volume and molarity of
The number of moles of a solute is calculated by the formula,
Substitute the values of volume of solution and molarity of
The solution of
The number of moles of
Therefore, the number of moles of
(b)
Interpretation:
The number of moles of the indicated ion present in the given solution is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 49QAP
The number of moles of
Explanation of Solution
The volume and molarity of
The number of moles of a solute is calculated by the formula,
Substitute the values of volume of solution and molarity of
The solution of
Thus, the number of moles of
Therefore, the number of moles of
(c)
Interpretation:
The number of moles of the indicated ion present in the given solution is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 49QAP
The number of moles of
Explanation of Solution
The volume and molarity of
The conversion of units of volume into
The number of moles of a solute is calculated by the formula,
Substitute the values of volume of solution and molarity of
The solution of
Thus, the number of moles of
Therefore, the number of moles of
(d)
Interpretation:
The number of moles of the indicated ion present in the given solution is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 49QAP
The number of moles of
Explanation of Solution
The volume and molarity of
The conversion of units of volume into
The number of moles of a solute is calculated by the formula,
Substitute the values of volume of solution and molarity of
The solution of
Thus, the number of moles of
Therefore, the number of moles of
Want to see more full solutions like this?
Chapter 15 Solutions
Introductory Chemistry
- 1. Polyester Formation a. Draw the structure of the polyester formed (Seabacoyl Chloride + Ethylene Glycol). (Insert scanned hand-drawn structure or ChemDraw image.) b. What molecules are eliminated in this condensation reaction?arrow_forwardDon't used Ai solutionarrow_forwardWhat is the absorption spectrum of a solution of naphthalene in benzene , and the vibronic transitions responsible for the vibrational fine structure ?arrow_forward
- 3. Titanium(III) chloride can be used to catalyze the polymerization of ethylene. It is prepared by hydrogen reduction of Titanium(IV) chloride. Reaction of hydrogen gas with titanium(IV) chloride gas produces solid titanium(III) chloride and hydrogen chloride gas. (a) Write a BALANCED chemical reaction for the preparation of titanium(III) chloride (b) A 250 L reaction vessel at 325°C is filled with hydrogen gas to a pressure of 1.3 atm. Titanium(IV) chloride is then added to bring the total pressure to 3.00 atm. How many grams of titanium(III) chloride will be produced after completion of the reaction? (c) What will be the pressure of the resulting hydrogen chloride gas that is also produced?arrow_forward1. Sodium azide (NaN3) is the primary chemical substance used in automobile air bags. Upon impact, the decomposition of sodium azide is initiated to produce sodium metal and nitrogen gas which then inflates the bag. How many liters of nitrogen gas are produced at 1.15 atm and 30.0°C when 145.0 grams of sodium azide decomposes? 2. Calcium carbonate (such as that in limestone) reacts with aqueous hydrochloric acid to produce carbon dioxide, aqueous calcium chloride and water. How many liters of carbon dioxide are produced at 20°C and 745 torr when 3.583 grams of calcium carbonate is dissolved in solution containing 1.550 grams of hydrochloric acid?arrow_forwardShow all work (where appropriate) for full credit. 1. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from a 500 mL, 0.0500 M stock solution. 2. Describe (steps, equipment and quantities) how to accurately prepare 250.0 mL of a 0.0075 M solution of NaCl (aq) from 100 g of solid NaCl.arrow_forward
- 5. An unlabeled gas cylinder was recently found in the laboratory. A sample of the gas was removed and analyzed. A 500.0 mL sample of the gas at 15°C and a pressure of 736 mmHg was found to weigh 2.688 g. Determine the molar mass of the gas. What element is the gas?arrow_forward4. Nitrogen gas is commonly sold in 49.0 L steal cylinders at a pressure of 150 atm. (a) How many moles of nitrogen are in the container if the temperature of the cylinder is 21°C. (b) How many moles of nitrogen will there be if the container above is heated to 100°C? (careful here) (c) What is the mass of nitrogen gas in the cylinder in part (a)? (d) What volume would the nitrogen occupy at 21°C, if the pressure was reduced to 1.02 atm? (e) What would be the pressure of the nitrogen gas in the cylinder when the temperature is raised to 39°C?arrow_forward6. A 0.4550 g sample of an unknown organic compound with the empirical formula CH2O was placed into a 150.0 ml vessel and was vaporized into a gas. At 175.0°C, the pressure of the vaporized compound was measured at 941.1 torr. (a) Determine the molar mass of the compound (b) Determine the molecular formula of the compound.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax