(a)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(b)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(c)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(d)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,
Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
Want to see more full solutions like this?
Chapter 15 Solutions
Introductory Chemistry
- Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardThe name of the following molecule is: Νarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning