Consider the reaction:
A solution is made containing an initial [Fe3+] of
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: Structure and Properties (2nd Edition)
- Because calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardIn a particular experiment, the equilibrium constant measured for the reaction, Cl2(g)+NO2(g)Cl2NO2(g), is 2.8. Based on this measurement, calculate AG° for this reaction. Calculate AG° using data from Appendix E at the back of the book and discuss the agreement between your two calculations.arrow_forwardWrite equilibrium constant expressions for the following reactions. For gases, use either pressures or concentrations. (a) 2 H2O2(g) 2 H2O(g) + O2(g) (b) CO(g) + O2g CO2(g) (c) C(s) + CO2(g) 2 CO(g) (d) NiO(s) + CO(g) Ni(s) + CO2(g)arrow_forward
- Calculate the value of the equilibrium constant for the reaction N2(g)+2O2(g)2NO2(g) if the concentrations of the species at equilibrium are [N2] = 0.0013, [O2] = 0.0024, and [NO2] = 0.00065.arrow_forwardBecause carbonic acid undergoes a second ionization, the student in Exercise 12.39 is concerned that the hydrogen ion concentration she calculated is not correct. She looks up the equilibrium constant for the reaction HCO,-(aq) «=* H+(aq) + COf'(aq) Upon finding that the equilibrium constant for this reaction is 4.8 X 10“H, she decides that her answer in Exercise 12.39 is correct. Explain her reasoning. A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H,CO,(aq) 5=6 H+(aq) + HCO,'(aq) K = 4.4 X 10'7She starts with 0.1000 A1 carbonic acid. W hat are the concentrations of all species at equilibrium?arrow_forwardFor the reaction 2NO(g)+2H2(g)N2(g)+2H2O(g) it is determined that, at equilibrium at a particular temperature, the concentrations are as follows: [NO(g)] = 8.1 103 M, [H2(g)] = 4.1 105 M, [N2(g)] = 5.3 102 M, and [H2O(g)] = 2.9 103 M. Calculate the value of K for the reaction at this temperature.arrow_forward
- The diagram represents an equilibrium mixture for the reaction N2(g) + O2(g) ⇌ 2 NO(g) Estimate the equilibrium constant.arrow_forwardThe experiment in Exercise 12.33 was redesigned so that the reaction started with 0.15 mol each of N2 and O2 being injected into a 1.0-L container at 2500 K. The equilibrium constant at 2500 K is 3.6 X 10“’. What was the composition of the reaction mixture after equilibrium was attained? The following reaction establishes equilibrium at 2000 K: N2(g) + O2(g) *2 2 NO K = 4.1 X IO-4 If the reaction began with 0.100 mol L-1 of N2 and 0.100 mol L-’ ofO2, what were the equilibrium concentrations of all species?arrow_forwardWhat is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forward
- In the reaction in Exercise 12.33, another trial was carried out. The reaction began with an initial concentration of N2 equal to the initial concentration of NO. Each had a concentration of 0.100 mol L-1. WTat were the equilibrium concentrations of all species? The following reaction establishes equilibrium at 2000 K: N2(g) + O2(g) ^2 NO K = 4.1 X 10~4 If the reaction began with 0.100 mol L-1 of N2 and 0.100 mol L'1 ofO2, what were the equilibrium concentrations of all species?arrow_forwardSuppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardThe following equilibrium was studied by analyzing the equilibrium mixture for the amount of H2S produced. Sb2S3(s)+3H2(g)2Sb(s)+3H2S(g) A vessel whose volume was 2.50 L was filled with 0.0100 mol of antimony(III) sulfide, Sb2S3, and 0.0100 mol H2. After the mixture came to equilibrium in the closed vessel at 440C, the gaseous mixture was removed, and the hydrogen sulfide was dissolved in water. Sufficient lead(II) ion was added to react completely with the H2S to precipitate lead(II) sulfide, PbS. If 1.029 g PbS was obtained, what is the value of Kc at 440C?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning