
Concept explainers
Find the member end moments and reaction for the frames.

Answer to Problem 31P
The end moments at the member AC
Explanation of Solution
Calculation:
Consider the elastic modulus E of the frame is constant.
Show the free body diagram of the entire frame as in Figure 1.
Refer Figure 1,
Calculate the fixed end moment for AC.
Calculate the fixed end moment for CA.
Calculate the fixed end moment for CD.
Calculate the fixed end moment for DC.
Calculate the fixed end moment for DB.
Calculate the fixed end moment for BD.
Calculate the fixed end moment for CE.
Calculate the fixed end moment for EC.
Calculate the fixed end moment for EF.
Calculate the fixed end moment for FE.
Calculate the fixed end moment for FD.
Calculate the fixed end moment for DF.
Chord rotations:
Show the free body diagram of the chord rotation of the frame as in Figure 2.
Refer Figure 2,
Calculate the chord rotation of the frame AC and BD.
Calculate the chord rotation of the frame CE and DF.
Calculate the chord rotation of the frame CD and EF.
Calculate the slope deflection equation for the member AC.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member CA.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member CD.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member DC.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member DB.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member BD.
Substitute 15 ft for L, 0 for
Calculate the slope deflection equation for the member CE.
Substitute 15 ft for L,
Calculate the slope deflection equation for the member EC.
Substitute 15 ft for L,
Calculate the slope deflection equation for the member EF.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member FE.
Substitute 30 ft for L, 0 for
Calculate the slope deflection equation for the member FD.
Substitute 15 ft for L,
Calculate the slope deflection equation for the member DF.
Substitute 15 ft for L,
Write the equilibrium equation as below.
Substitute equation (2), equation (3), and equation (7) in above equation.
Write the equilibrium equation as below.
Substitute equation (4), equation (5) and equation (12) in above equation.
Write the equilibrium equation as below.
Substitute equation (8) and equation (9) in above equation.
Write the equilibrium equation as below.
Substitute equation (10) and equation (11) in above equation.
Show the free body diagram of the joint E and F due to sway force as in Figure 3.
Calculate the horizontal reaction at the member CE due to sway force by taking moment about point C.
Calculate the horizontal reaction at the member DF due to sway force by taking moment about point D.
Calculate the reaction of the support E and support F due to sway force by considering horizontal equilibrium.
Substitute equation (7), (8), (11) and (12).
Show the free body diagram of the joint C and D due to sway force as in Figure 4.
Calculate the horizontal reaction at the member AC due to sway force by taking moment about point A.
Calculate the horizontal reaction at the member BD due to sway force by taking moment about point B.
Calculate the reaction of the support C and support D due to sway force by considering horizontal equilibrium.
Substitute equation (1), equation (2), equation (5), and equation (6).
Solve the equation (13), equation (14), equation (15), equation (16), equation (17) and equation (18).
Calculate the moment about AC.
Substitute
Calculate the moment about CA.
Substitute
Calculate the moment about CD.
Substitute
Calculate the moment about DC.
Substitute
Calculate the moment about DB.
Substitute
Calculate the moment about BD.
Substitute
Calculate the moment about CE.
Substitute
Calculate the moment about EC.
Substitute
Calculate the moment about EF.
Substitute
Calculate the moment about FE.
Substitute
Calculate the moment about FD.
Substitute
Calculate the moment about DF.
Substitute
Show the section free body diagram of the member EF as in Figure 5.
Consider member EF:
Calculate the vertical reaction at the joint E by taking moment about point F.
Calculate the vertical reaction at joint F by resolving the horizontal equilibrium.
Show the section free body diagram of the member CD as in Figure 6.
Consider member CD:
Calculate the vertical reaction at the joint C by taking moment about point D.
Calculate the vertical reaction at joint D by resolving the horizontal equilibrium.
Show the section free body diagram of the member AC, CE, DB and FD as in Figure 7.
Calculate the reaction at joint A:
Calculate the reaction at joint B:
Consider member AC:
Calculate the horizontal reaction at the joint A by taking moment about point C.
Consider member BD:
Calculate the horizontal reaction at the joint B by taking moment about point D.
Show the reactions of the frame as in Figure 8.
Want to see more full solutions like this?
Chapter 15 Solutions
Structural Analysis (MindTap Course List)
- For the soil system presented below, calculate and draw diagrams of distributions of the totaland effective stresses and pore water pressure. Assume an upward water flow with a velocity of0.000,001 cm/s.arrow_forwardRefer to attached problem.arrow_forwardCalculate: a) effective stresses at points A and B before the placement of foundations 1 and 2, b)the increase of pressure at point A as a result of the placement of the circular foundation 1, c) theincrease of pressure at point B as a result of the placement of the strip foundation 2.arrow_forward
- Consider the total head-loss in the system forthis flow is 18.56 ft (head-losses in first and second pipe are 13.83 ft and 4.73 ftrespectively). Please show numerical values for EGL/HGL at the beginning/end/intermediatechange point. (Point distribution: elevation determination 5 points, EGL, HGL lines 4points)arrow_forwardAs shown in the figure below, a 1.5 m × 1.5 m footing is carrying a 400 kN load. P Depth (m) 0.0 1.0 2.0 Df Groundwater table (Yw = 9.81 kN/m³) 3.5 Yt = 16.5 kN/m³ E = 9,000 kPa Sandy soil Ysat 17.5 kN/m³ E = 15,000 kPa 6.0 Stiff Clay (OCR = 2) Bedrock Ysat 18.0 kN/m³ eo = 0.8 Cc = 0.15, Cr = 0.02 Eu =40,000 kPa (a) Estimate the immediate settlement beneath the center of the footing. Assuming that Poisson's ratios of sand and soft clay are 0.3 and 0.5, respectively. Use numerical integration approach. For the calculations, use layers (below the bottom of the footing) of thicknesses: 1 m; 1.5 m, and 2.5 m. (b) Determine the primary consolidation settlement beneath the center of the footing. (c) Redo Part (b) if OCR=1.1. Note: Use the 2:1 method to determine the stress increase below the footing. For parts (b) and (c), use the one-dimensional consolidation theory.arrow_forwardAssuming that the whole DMV is only handled by one queue and one server and both the arrival rate (20 customer per hour) and the service rate (30 customers per hour) random variables are Markovian. (a) What is the mean queue length? [3 pts] (b) Percentage of Idle time of the server? [3 pts] (c) Average number in the queue? [3 pts] (d) Average number in the system? [3 pts] (e) The average wait time in the queue? [3 pts] (f) The average wait time in the system? [3 pts] (g) The probability that no one is in the system. [2 pts]arrow_forward
- A toll booth on the Thruway experiences an average inter-arrival time of 3 minutes between each vehicle. As an operator, you want to have a mean queue length of at most 2 vehicles. What mean service rate (per hour) will the toll booth need to provide?arrow_forwardA freeway is to be designed at a location on level terrain for an annual average daily traffic (AADT) of 45,000 vehicles per day. For a conversion of AADT to an annual hourly volume, assume that the K-factor is 0.10 (i.e., the 30th highest hourly volume of the year). In addition, 55% of the peak-hour traffic volume is expected to travel in the peak direction (D = 0.55). This freeway segment will be for regular commuters. Other estimates include: PHF of 0.95, free-flow speed of 65 mph, and 20% trucks of the traffic stream. In order to determine the number of lanes required to provide at least LOS C, answer the following questions. (a) Determine Free Flow Speed (FFS) [4 pts] (b) Find the directional design-hour volume (DDHV) [4 pts] (c) Find fHv [4 pts] (d) Determine the number of lanes required. [4 pts] (e) Check the expected LOS for 2-directional lanes on this freeway segment. [4 pts]arrow_forwardObserving a deterministic queue in 3 hours, suppose vehicles arrive at a rate of 500 vph for the first hour and 150 vph for the second and third hours. The service rate is 150 vph for the first two hours. The server can discharge 500 vehicles for the last hour. (a) What is the queue length after 30 minutes? [4 pts] (b) What is the maximum queue length? [4 pts] (c) When does the maximum queue happen? [4 pts] (d) What is the total delay? [4 pts] (e) Describe how the queue grows and discharges in this queuing process. [4 pts]arrow_forward
- Please explain step by step and show the formula usedarrow_forwardFind the increase of pressure at points A and B due to a loading q=400 kPa placed on the givenfoundation.arrow_forwardThe 4-story building has a floor dead load D = 80 psf, floor live load , L = 100 psf, roof dead load Dr = 40 psf, roof live load Lr = 60 psf, and snow load S = 50 psf. The length of columns is 18 ft and the column ends are pins (Lx = Ly = 18 ft). 1) Determine Pu on interior columns B2-4 and B2-1 2) Use Table 4-1a (pg 4-12 to 4-24) in AISC to select the lightest W shapes for these columns 3) Use Table 4-4 (pg 4-69 to 4-83) in AISC to select lightest square HSS shape for the columns.arrow_forward
