Concept explainers
(a)
Using the MATLAB Help menu discuss how the function ABS(X) used.
(a)
Explanation of Solution
In MATLAB, go to Help, it shows the documentation, examples, wed support, and academy symbols. Open the documentation then search for the specific functions, it will provides the syntax function then click on it, will shows the information about each of the function.
Search for the function ABS(X), the function ABS(X) is used to display the absolute value of the real values and complex values.
Example 1:
In the MATLAB command window type the code as follows,
X=-5;
abs(X)
The output will be displayed as follows,
ans =
5
Example 2:
In the MATLAB command window type the code as follows,
X=-5+6*i;
abs(X)
The output will be displayed as follows,
ans =
7.8102
Conclusion:
Thus, the function ABS(X) has been explained.
(b)
Using the MATLAB Help menu discuss how the function TIC, TOC used.
(b)
Explanation of Solution
Now Search for the command, it is TIC is used to start a stopwatch timer and the command TOC is used to print the number of seconds required for the operation. Both are used to find the program elapsed time.
Example:
In the MATLAB command window write the code as follows,
tic
P = rand(1000,300);
Q = rand(1000,300);
toc
C = P'.*Q';
toc
Its output displays as below, but it is changes every time as the execution time elapsed different time length for each execution,
Elapsed time is 0.049194 seconds.
Elapsed time is 0.067125 seconds.
Conclusion:
Thus, the function TIC, TOC has been explained.
(c)
Using the MATLAB Help menu discuss how the function SIZE(x) used.
(c)
Explanation of Solution
Now search for the SIZE (x), it is the two
Example:
Consider the matrix as follows:
In the MATLAB command window write the code as follows,
x=[1 2 3;4 5 6;7 8 9];
D=size(x)
The output will be displayed as follows,
D =
3 3
Conclusion:
Thus, the function SIZE(x) has been explained.
(d)
Using the MATLAB Help menu discuss how the function FIX(x) used.
(d)
Explanation of Solution
Now search for the command FIX(x) in Help tab, it is used to round the element of x to the nearest integer towards zero.
Example:
In the MATLAB command window write the code as follows,
x=3.48;
fix(x)
The output will be displayed as follows:
ans =
3
Conclusion:
Thus, the function FIX(x) has been explained.
(e)
Using the MATLAB Help menu discuss how the function FLOOR(x) used.
(e)
Explanation of Solution
The command FLOOR(x) is used to round the element of x to the nearest integer towards negative infinity.
Example:
In the MATLAB command window write the code as follows,
x=-3.67;
floor(x)
The output will be displayed as follows,
ans =
-4
Conclusion:
Thus, the function FLOOR(x) has been explained.
(f)
Using the MATLAB Help menu discuss how the function CEIL(x) used.
(f)
Explanation of Solution
In MATLAB Help tab search the function, the command CEIL(x) is used to round the element of x to the nearest integer towards infinity.
Example:
In the MATLAB command window write the code as follows,
x=3.67;
ceil(x)
The output will be displayed as follows,
ans =
4
Conclusion:
Thus, the function CEIL(x) has been explained.
(g)
Using the MATLAB Help menu discuss how the function CALENDAR used.
(g)
Explanation of Solution
The CALENDAR function is a
Example 1:
In the MATLAB command window write the code as follows,
calendar (1989,10)
The output will be displayed as follows,
Oct 1989
S M Tu W Th F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 0 0 0 0
0 0 0 0 0 0 0
Example 2:
In the MATLAB command window write the code as follows,
calendar (8,10)
The output will be displayed as follows,
Oct 0008
S M Tu W Th F S
0 0 0 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 0
0 0 0 0 0 0 0
Conclusion:
Thus, the function CALENDAR has been explained.
Want to see more full solutions like this?
Chapter 15 Solutions
ENGINEERING FUNDAMENTALS
- ضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardA square flexible foundation of width B applies a uniform pressure go to the underlying ground. (a) Determine the vertical stress increase at a depth of 0.5B below the center using Aσ beneath the corner of a uniform rectangular load given by Aσ Variation of Influence Value I m n 0.5 0.6 0.8 1.0 0.2 0.4 0.2 0.01790 0.03280 0.03866 0.04348 0.05042 0.05471 0.4 0.03280 0.06024 0.07111 0.08009 0.09314 0.10129 0.5 0.03866 0.07111 0.08403 0.09473 0.11035 0.12018 0.6 0.04348 0.08009 0.09473 0.10688 0.12474 0.13605 0.8 0.05042 0.09314 0.11035 0.12474 0.14607 0.15978 1.0 0.05471 0.10129 0.12018 0.13605 0.15978 0.17522 (Enter your answer to three significant figures.) Ασ/90 = Activity Frame (b) Determine the vertical stress increase at a depth of 0.5B below the center using the 2 : 1 method equation below. 90 x B x L Aσ = (B+ z) (L+ z) (Enter your answer to three significant figures.) Δσ/90 = (c) Determine the vertical stress increase at a depth of 0.5B below the center using stress isobars in…arrow_forwardNeed help!!!arrow_forward
- 2 A flexible circular area is subjected to a uniformly distributed load of 450 kN/m² (the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. H₂ 1.0 H₂ B 0.8 CHI HD DV 0.6 C 1.0 1.5 0.4 0.2 6.0 8.0. 10.0 2.0 2.5 3.0 4.0 5.0 H₁ (Enter your answer to two significant figures.) Δσαν τ kN/m² 6arrow_forwardRefer to the figure below. Using the procedure outlined in your textbook, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 45 tons. Use the equations: Aσ = and qo x B x L (B+ z)(L+ z) Aσ av (H2/H₁) Δσι +44 + Δσο net load 6 4:5 ft 10 ft 5ft x 5ft Sand Sand y=100 lb/ft³ Ysat 122 lb/ft³:" Ysat 120 lb/ft³: 0.7 C=0.25 Groundwater table C=0.06 Preconsolidation pressure = 2000 lb/ft² (Enter your answer to three significant figures.) Ασαν = lb/ft²arrow_forwardRefer to the figure below, which shows a flexible rectangular area. Given: B₁ = 4 ft, B₂ = 6 ft, L₁ = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 4100 lb/ft², determine the stress increase at a depth of 10 ft located immediately below point O. Use the table below. T B(1) 3 B(2) 2 L(1) * 4 L2) Table 1 Variation of Influence Value I n m 0.8 0.9 1.0 1.2 1.4 0.1 0.02576 0.02698 0.02794 0.02926 0.03007 0.2 0.05042 0.05283 0.05471 0.05733 0.05894 0.3 0.07308 0.07661 0.07938 0.08323 0.08561 0.4 0.09314 0.09770 0.10129 0.10631 0.10941 0.5 0.11035 0.11584 0.12018 0.12626 0.13003 0.6 0.12474 0.13105 0.13605 0.14309 0.14749 0.7 0.13653 0.14356 0.14914 0.15703 0.16199 0.8 0.14607 0.15371 0.15978 0.16843 0.17389 0.9 0.15371 0.16185 0.16835 0.1766 0.18357 1.0 0.15978 0.16835 0.17522 0.18508 0.19139 1.1 0.16843 0.17766 0.18508 0.19584 0.20278 (Enter your answer to three significant figures.) Aσ = lb/ft²arrow_forward
- Point loads of magnitude 100, 200, and 380 kN act at B, C, and D, respectively (in the figure below). Determine the increase in vertical stress at a depth of 6 m below point A. Use Boussinesq's equation. B 6 m A 6 m с 3 m D (Enter your answer to three significant figures.) Δαχτ kN/m²arrow_forwardTwo line loads q₁ = 30 kN/m and 92 = 44 kN/m of infinite lengths are acting on top of an elastic medium, as shown in the figure below. Find the vertical stress increase at A. 92 91 6 m 3 m 3 m Δσ A (Enter your answer to three significant figures.) Vertical stress increase at A = kN/m²arrow_forwardA flexible circular area is subjected to a uniformly distributed load of 144 kN/m² (see the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. Use the equations: 1 Ασ = go 1 [1 + (2) ² ³/2 and Aσ av (H2/H1) Δσι + 41ση + Ασο 6 9 B/2 krark do Δε Aσ (Enter your answer to three significant figures.) Ασαν = kN/m²arrow_forward
- In construction what is the difference in general requirements specific project requirements?arrow_forwardRefer to the figure below. Determine the vertical stress increase Aσ at point A with the values q₁ = 90 kN/m, q2 = 410 kN/m, x₁ = 4m, x2 = 2.5 m, and z = 3 m. Line load = 91 Line load=92 Δε (Enter your answer to three significant figures.) Δατ kN/m²arrow_forwardRefer to the figure below. A strip load of q = 870 lb/ft² is applied over a width B = 36 ft. Determine the increase in vertical stress at point A located z = 15 ft below the surface. Given: x = 27 ft. Use the table below. B q = Load per unit area Aσ A Table 1 Variation of Ao/go with 2z/B and 2x/B 2x/B 2z/B 1.3 1.4 1.5 1.6 0.00 0.000 0.000 0.000 1.7 0.000 0.000 0.10 0.007 0.003 0.002 0.001 0.001 0.20 0.040 0.020 0.011 0.30 0.090 0.052 0.031 0.40 0.141 0.090 0.059 0.040 0.027 0.50 0.185 0.128 0.089 0.063 0.60 0.222 0.163 0.120 0.088 0.70 0.250 0.193 0.80 0.273 0.218 0.007 0.004 0.020 0.013 0.046 0.066 0.148 0.113 0.087 0.173 0.137 0.108 0.90 0.291 0.239 0.195 0.158 0.128 1.00 0.305 0.256 0.214 0.177 0.147 (Enter your answer to three significant figures.) lb/ft² Δοχ =arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage Learning