(a)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial and final energy level is
The magnetic quantum number for the initial and final energy level is
The selection will not allow this transition. Therefore, the transition
The transition
(b)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial and final energy level is
The value of
The selection will allow this transition. Therefore, the transition
The transition
(c)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial energy level is
The magnetic quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The selection will allow this transition. Therefore, the transition
The transition
(d)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial energy level is
The magnetic quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The selection will not allow this transition. Therefore, the transition
The transition
Want to see more full solutions like this?
Chapter 15 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
- A mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forwardHow many chiral carbons are in the molecule? Farrow_forwardcan someone give the curly arrow mechanism for this reaction written with every intermediate and all the side products pleasearrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
