(a)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial and final energy level is
The magnetic quantum number for the initial and final energy level is
The selection will not allow this transition. Therefore, the transition
The transition
(b)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial and final energy level is
The value of
The selection will allow this transition. Therefore, the transition
The transition
(c)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial energy level is
The magnetic quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The selection will allow this transition. Therefore, the transition
The transition
(d)
Interpretation:
Whether the transition
Concept introduction:
Electronic spectra are formed by the excitation and relaxation process of electrons. The excitation process is due to the transition of an electron from a lower energy level to a higher energy level. The relaxation process is due to the transition of an electron from a higher energy level to a lower energy level.

Answer to Problem 15.8E
The transition
Explanation of Solution
The selection rules are shown below.
Where,
•
•
The change in principal quantum number
The electronic transition is
The azimuthal quantum number for the initial energy level is
The azimuthal quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The magnetic quantum number for the initial energy level is
The magnetic quantum number for the final energy level is
The value of
Where,
•
•
Substitute the values of
The value of
The selection will not allow this transition. Therefore, the transition
The transition
Want to see more full solutions like this?
Chapter 15 Solutions
Student Solutions Manual for Ball's Physical Chemistry, 2nd
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction LiNO3arrow_forwardAn unknown weak acid with a concentration of 0.410 M has a pH of 5.600. What is the Ka of the weak acid?arrow_forward(racemic) 19.84 Using your reaction roadmaps as a guide, show how to convert 2-oxepanone and ethanol into 1-cyclopentenecarbaldehyde. You must use 2-oxepanone as the source of all carbon atoms in the target molecule. Show all reagents and all molecules synthesized along the way. & + EtOH H 2-Oxepanone 1-Cyclopentenecarbaldehydearrow_forward
- R₂ R₁ R₁ a R Rg Nu R₂ Rg R₁ R R₁₂ R3 R R Nu enolate forming R₁ R B-Alkylated carbonyl species or amines Cyclic B-Ketoester R₁₁ HOB R R₁B R R₁₂ B-Hydroxy carbonyl R diester R2 R3 R₁ RB OR R₂ 0 aB-Unsaturated carbonyl NaOR Aldol HOR reaction 1) LDA 2) R-X 3) H₂O/H₂O ketone, aldehyde 1) 2°-amine 2) acid chloride 3) H₂O'/H₂O 0 O R₁ R₁ R R₁ R₁₂ Alkylated a-carbon R₁ H.C R₁ H.C Alkylated methyl ketone acetoacetic ester B-Ketoester ester R₁ HO R₂ R B-Dicarbonyl HO Alkylated carboxylic acid malonic ester Write the reagents required to bring about each reaction next to the arrows shown. Next, record any regiochemistry or stereochemistry considerations relevant to the reaction. You should also record any key aspects of the mechanism, such as forma- tion of an important intermediate, as a helpful reminder. You may want to keep track of all reactions that make carbon-carbon bonds, because these help you build large molecules from smaller fragments. This especially applies to the reactions in…arrow_forwardProvide the reasonable steps to achieve the following synthesis.arrow_forwardIdentify which compound is more acidic. Justify your choice.arrow_forward
- Provide the reasonable steps to achieve the following synthesis.arrow_forwardWhen anisole is treated with excess bromine, the reaction gives a product which shows two singlets in 1H NMR. Draw the product.arrow_forward(ii) Draw a reasonable mechanism for the following reaction: CI NaOH heat OH (hint: SNAr Reaction) :arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
