
Concept explainers
(a)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
A weak acid in water produces a hydrogen ion and conjugate base. When weak acid dissolves in water, some acid molecules transfer proton to water.
In solution of weak acid, the actual concentration of the acid molecules becomes less because partial dissociation of acid has occurred and lost protons to form hydrogen ions.
The reaction is as follows:
The reaction is as follows:
The expression for
For value of
The fraction ionized is equal to the ratio of concentration of ionized acid to analytical concentration multiplied by 100.
(a)

Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute 0.000223587 for
Hence,fraction of acid ionized in
(b)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute 0.0221372 for
Hence, the fraction of acid ionized in
(c)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore concentration of
The equation for fraction of acid ionized in
Substitute 0.00157848 for
Hence,the fraction of acid ionized in
(d)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute 0.00661881 for
Hence, the fraction of acid ionized in
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry: Principles and Practice
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning



