Concept explainers
(a)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
A weak acid in water produces a hydrogen ion and conjugate base. When weak acid dissolves in water, some acid molecules transfer proton to water.
In solution of weak acid, the actual concentration of the acid molecules becomes less because partial dissociation of acid has occurred and lost protons to form hydrogen ions.
The reaction is as follows:
The reaction is as follows:
The expression for
For value of
The fraction ionized is equal to the ratio of concentration of ionized acid to analytical concentration multiplied by 100.
(a)
Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute 0.000223587 for
Hence,fraction of acid ionized in
(b)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(b)
Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute 0.0221372 for
Hence, the fraction of acid ionized in
(c)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(c)
Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore concentration of
The equation for fraction of acid ionized in
Substitute 0.00157848 for
Hence,the fraction of acid ionized in
(d)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(d)
Answer to Problem 15.66QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore, concentration of
The equation for fraction of acid ionized in
Substitute 0.00661881 for
Hence, the fraction of acid ionized in
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry: Principles and Practice
- Comment on the following paragraph. In halides, MXn stoichiometry does not require a value of n so large as to prevent the approach of M+ ions, for steric or electrostatic reasons.arrow_forwardExplain Wade's rules, Indicate what the letters S and n represent in the formula.arrow_forwardShow work. Don't give Ai generated solutionarrow_forward
- Hi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forwardHi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning