
Concept explainers
(a)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
A weak acid in water produces a hydrogen ion and conjugate base. When weak acid dissolves in water, some acid molecules transfer proton to water.
In solution of weak acid, the actual concentration of the acid molecules becomes less because partial dissociation of acid has occurred and lost protons to form hydrogen ions.
The reaction is as follows:
The reaction is as follows:
The expression for
For value of
The fraction ionized is equal to the ratio of concentration of ionized acid to analytical concentration multiplied by 100.
(a)

Answer to Problem 15.65QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore concentration of
The equation for fraction of acid ionized in
Substitute
Hence, the fraction of acid ionized in
(b)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 15.65QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore concentration of
The equation for fraction of acid ionized in
Substitute
Hence, the fraction of acid ionized in
(c)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 15.65QE
The fraction of acid ionized in
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Let us assume the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrange above equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Therefore concentration of
The equation for fraction of acid ionized in
Substitute
Hence, the fraction of acid ionized in
(d)
Interpretation:
The fraction of acid ionized in
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 15.65QE
The fraction of acid ionizedin
Explanation of Solution
The chemical equation for ionization of
The concentration of
Also,
Consider the concentration of
The ICE table for the above reaction is as follows:
The expression for
Substitute
Rearrangeabove equation to obtain the required quadratic equation to compute the concentration of hydrogen ion as follows:
Solve for x, therefore the concentration of hydrogen ion is as calculated follows:
Or,
Neglect, the negative value of x as concentration cannot be negative.
Therefore concentration of
The equation for fraction of acid ionized in
Substitute
Hence, the fraction of acid ionized in
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry: Principles and Practice
- You are asked to use curved arrows to generate the significant resonance structures for the following series of compounds and to label the most significant contributor. Identify the errors that would occur if you do not expand the Lewis structures or double-check the mechanisms. Also provide the correct answers.arrow_forwardhow to get limiting reactant and % yield based off this data Compound Mass 6) Volume(mL Ben zaphone-5008 ne Acetic Acid 1. Sam L 2-propanot 8.00 Benzopin- a col 030445 Benzopin a Colone 0.06743 Results Compound Melting Point (°c) Benzopin acol 172°c - 175.8 °c Benzoping to lone 1797-180.9arrow_forwardAssign ALL signals for the proton and carbon NMR spectra on the following pages.arrow_forward
- 7.5 1.93 2.05 C B A 4 3 5 The Joh. 9 7 8 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 0.86 OH 10 4 3 5 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 CI 4 3 5 1 2 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 2.21 4.00 1.5 2.00 2.07 1.0 ppm 2.76arrow_forwardAssign the functional group bands on the IR spectra.arrow_forwardFind the pH of a 0.120 M solution of HNO2. Find the pH ignoring activity effects (i.e., the normal way). Find the pH in a solution of 0.050 M NaCl, including activityarrow_forward
- Please help me answer these three questions. Required info should be in data table.arrow_forwardDraw the major organic substitution product or products for (2R,3S)-2-bromo-3-methylpentane reacting with the given nucleophile. Clearly drawn the stereochemistry, including a wedged bond, a dashed bond and two in-plane bonds at each stereogenic center. Omit any byproducts. Bri CH3CH2O- (conc.) Draw the major organic product or products.arrow_forwardTartaric acid (C4H6O6) is a diprotic weak acid. A sample of 875 mg tartaric acid are dissolved in 100 mL water and titrated with 0.994 M NaOH. How many mL of NaOH are needed to reach the first equivalence point? How many mL of NaOH are needed to reach the second equivalence point?arrow_forward
- Including activity, calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.arrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M KBr.arrow_forwardIncluding activity, calculate the pH of a 0.010 M HCl solution with an ionic strength of 0.10 M.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning



