
Concept explainers
(a)
Interpretation:
The product of reaction between hydrochloric acid and ammonia has to be identified. Also, the proton transfer in acid-base reaction of hydrochloric acid and ammonia has to be determined.
Concept Introduction:
In Bronsted–Lowry theory, acid is defined as a substance that donates a proton. In a solution, it dissociates to give
Base is defined as a substance that accepts a proton. In a solution, it dissociates to give
Brønsted–Lowry acid transfer a proton and form base as the other compound can accept a proton. This is called conjugate acid-base pair. In pair of conjugate acid and base, the acid form is protonated and the base form lost the proton.
Every base has a conjugate acid. They are related by loss or gain of proton. The expression for base and conjugate acid is as follows:
Every acid has a conjugate base. They are related by loss or gain of proton. The expression for conjugate base and acid is as follows:
The reaction mechanism in which proton is donated by a compound and accepted by the other compound is called a proton transfer reaction. It involves transfer of protons between two species in
(b)
Interpretation:
The product of reaction between hydrogen carbonate ion and nitric acid has to be identified. Also, the proton transfer in acid-base reaction of hydrogen carbonate ion and nitric acid has to be determined.
Concept Introduction:
Refer to part (a)
(c)
Interpretation:
The product of reaction between cyanide ion and formic acid has to be identified. Also, the proton transfer in acid-base reaction of cyanide ion and formic acid has to be determined.
Concept Introduction:
Refer to part (a)
(d)
Interpretation:
The product of reaction between acetate ion and water has to be identified. Also, the proton transfer in acid-base reaction of acetate ion and water has to be determined.
Concept Introduction:
Refer to part (a).

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Chemistry: Principles and Practice
- Draw the complete mechanism for the acid-catalyzed hydration of this alkene. esc 田 Explanation Check 1 888 Q A slock Add/Remove step Q F4 F5 F6 A བྲA F7 $ % 5 @ 4 2 3 & 6 87 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Ce W E R T Y U S D LL G H IK DD 요 F8 F9 F10 F1 * ( 8 9 0 O P J K L Z X C V B N M H He commandarrow_forwardExplanation Check F1 H₂O H₂ Pd 1) MCPBA 2) H3O+ 1) Hg(OAc)2, H₂O 2) NaBH4 OH CI OH OH OH hydration halohydrin formation addition halogenation hydrogenation inhalation hydrogenation hydration ☐ halohydrin formation addition halogenation formation chelation hydrogenation halohydrin formation substitution hydration halogenation addition Ohalohydrin formation subtraction halogenation addition hydrogenation hydration F2 80 F3 σ F4 F5 F6 1 ! 2 # 3 $ 4 % 05 Q W & Å © 2025 McGraw Hill LLC. All Rights Reserved. F7 F8 ( 6 7 8 9 LU E R T Y U A F9arrow_forwardShow the mechanism steps to obtain the lowerenergy intermediate: *see imagearrow_forward
- Soap is made by the previous reaction *see image. The main difference between one soap and another soap isthe length (number of carbons) of the carboxylic acid. However, if a soap irritates your skin, they mostlikely used too much lye.Detergents have the same chemical structure as soaps except for the functional group. Detergentshave sulfate (R-SO4H) and phosphate (R-PO4H2) functional groups. Draw the above carboxylic acidcarbon chain but as the two variants of detergents. *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forwardWhat are the reactions or reagents used? *see imagearrow_forward
- Provide the mechanism for this transformation: *see imagearrow_forwardAssign all the signals individually (please assign the red, green and blue)arrow_forwardThe two pKa values of oxalic acid are 1.25 and 3.81. Why are they not the same value? Show the protontransfer as part of your explanation. *see imagearrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





