Concept explainers
Review. A rock rests on a concrete sidewalk. An earthquake strikes, making the ground move vertically in
Trending nowThis is a popular solution!
Chapter 15 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Additional Science Textbook Solutions
Fundamentals Of Physics - Volume 1 Only
University Physics Volume 2
College Physics: A Strategic Approach (3rd Edition)
College Physics
The Physics of Everyday Phenomena
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
- When a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forwardA block of mass m is connected to two springs of force constants k1 and k2 in two ways as shown in Figure P12.56. In both cases, the block moves on a frictionless table after it is displaced from equilibrium and released. Show that in the two cases the block exhibits simple harmonic motion with periods (a) T=2m(k1+k2)k1k2 and (b) T=2mk1+k2 Figure P12.56arrow_forwardFour people, each with a mass of 72.4 kg, are in a car with a mass of 1 130 kg. An earthquake strikes. The vertical oscillations of the ground surface make the car bounce up and down on its suspension springs, but the driver manages to pull off the road and stop. When the frequency of the shaking is 1.80 Hz, the car exhibits a maximum amplitude of vibration. The earthquake ends and the four people leave the car as fast as they can. By what distance does the cars undamaged suspension lift the cars body as the people get out?arrow_forward
- A 500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 10.0 cm. Calculate the maximum value of its (a) speed and (b) acceleration, (c) the speed and (d) the acceleration when the object is 6.00 cm from the equilibrium position, and (e) the time interval required for the object to move from x = 0 to x = 8.00 cm.arrow_forwardA spherical bob of mass m and radius R is suspended from a fixed point by a rigid rod of negligible mass whose length from the point of support to the center of the bob is L (Fig. P16.75). Find the period of small oscillation. N The frequency of a physical pendulum comprising a nonuniform rod of mass 1.25 kg pivoted at one end is observed to be 0.667 Hz. The center of mass of the rod is 40.0 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point?arrow_forwardA 200-g block is attached to a horizontal spring and executes simple harmonic motion with a period of 0.250 s. The total energy of the system is 2.00 J. Find (a) the force constant of the spring and (b) the amplitude of the motion.arrow_forward
- A Two springs, with spring constants k1 and k2, are connected to a block of mass m on a frictionless, horizontal table (Fig. P16.80). The block is extended a distance x from equilibrium and released from rest. Show that the block executes simple harmonic motion with a period given by T=2m(k1+k2)k1k2 FIGURE P16.80arrow_forwardA blockspring system oscillates with an amplitude of 3.50 cm. The spring constant is 250 N/m and the mass of the block is 0.500 kg. Determine (a) the mechanical energy of the system, (b) the maximum speed of the block, and (c) the maximum acceleration.arrow_forwardA small object is attached to the end of a string to form a simple pendulum. The period of its harmonic motion is measured for small angular displacements and three lengths. For lengths of 1.000 m, 0.750 m, and 0.500 m, total time intervals for 50 oscillations of 99.8 s, 86.6 s, and 71.1s are measured with a stopwatch. (a) Determine the period of motion for each length. (b) Determine the mean value of g obtained from these three independent measurements and compare it with the accepted value. (c) Plot T2 versus L and obtain a value for g from the slope of your best-fit straight-line graph. (d) Compare the value found in part (c) with that obtained in part (b).arrow_forward
- Review. A system consists of a spring with force constant k = 1 250 N/m, length L = 1.50 m, and an object of mass m = 5.00 kg attached to the end (Fig. P15.49). The object is placed at the level of the point of attachment with the spring unstretched, at position yi = L, and then it is released so that it swings like a pendulum. (a) Find the y position of the object at the lowest point. (b) Will the pendulums period be greater or less than the period of a simple pendulum with the same mass m and length L? Explain. Figure PI 5.49arrow_forwardConsider the simplified single-piston engine in Figure CQ12.13. Assuming the wheel rotates with constant angular speed, explain why the piston rod oscillates in simple harmonic motion. Figure CQ12.13arrow_forward(a) A hanging spring stretches by 35.0 cm when an object of mass 450 g is hung on it at rest. In this situation, we define its position as x = 0. The object is pulled down an additional 18.0 cm and released from rest to oscillate without friction. What is its position x at a moment 84.4 s later? (b) Find the distance traveled by the vibrating object in part (a), (c) What If? Another hanging spring stretches by 35.5 cm when an object of mass 440 g is hung on it at rest. We define this new position as x = 0. This object is also pulled down an additional 18.0 cm and released from rest to oscillate without friction. Find its position 84.4 s later, (d) Find the distance traveled by the object in part (c). (e) Why are the answers to parts (a) and (c) so different when the initial data in parts (a) and (c) are so similar and the answers to parts (b) and (d) are relatively close? Does this circumstance reveal a fundamental difficulty in calculating the future?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning