EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100663987
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 15.56AP
The mass of the deuterium molecule (D2) is twice that of the hydrogen molecule (H2). If the vibrational frequency of H2 is 1.30 × 1014 Hz, what is the vibrational frequency of D2? Assume the “spring constant" of attracting forces is the same for the two molecules.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Carbon-14 (14C) is an unstable isotope of carbon. It has the same chemical properties and electronic structure as the much more abundant isotope carbon-12 (12C), but it has different nuclear properties. Its mass is 14 u, greater than that of carbon-12 because of the two extra neutrons in the carbon-14 nucleus. Assume the CO molecular potential energy is the same for both isotopes of carbon. (a) What is the vibrational frequency of 14CO? (b) What is the moment of inertia of 14CO? (c) What wavelengths of light can be absorbed by 14CO in the (υ = 0, J = 10) state that cause it to end up in the υ = 1 state?
Two blocks of masses m1=1.0 kg and m2=3 kg are connected by an ideal spring of force constant k=4 N/m and relaxed length L. If we make them oscillate horizontally on a frictionless surface, releasing them from rest after stretching the spring, what will be the angular frequency ω of the oscillation? Choose the closest option.
Hint: Find the differential equation for spring deformation.
A small block of mass M = 850 g is placed on top of a larger block of mass 3M which is placed on a level frictionless surface and is attached to a horizontal spring of spring constant k = 3.5 N/m. The coefficient of static friction between the blocks is μ = 0.2. The lower block is pulled until the attached spring is stretched a distance D = 1.5 cm and released.Randomized Variables
M = 850 gD = 1.5 cmk = 3.5 N/m
a) Calculate a value for the magnitude of the maximum acceleration amax of the blocks in m/s2.
b) Write an equation for the largest spring constant kmax for which the upper block does not slip.
c) Calculate a value for the largest spring constant kmax for which the upper block does not slip, in N/m.
Chapter 15 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 15 - A block on the end of a spring is pulled to...Ch. 15 - Consider a graphical representation (Fig. 15.3) of...Ch. 15 - Figure 15.4 shows two curves representing...Ch. 15 - An object of mass m is hung from a spring and set...Ch. 15 - The ball in Figure 15.13 moves in a circle of...Ch. 15 - The grandfather clock in the opening storyline...Ch. 15 - If a simple pendulum oscillates with small...Ch. 15 - You attach a block to the bottom end of a spring...Ch. 15 - A block-spring system vibrating on a frictionless,...Ch. 15 - An object-spring system moving with simple...
Ch. 15 - An object of mass 0.40 kg, hanging from a spring...Ch. 15 - A runaway railroad car, with mass 3.0 105 kg,...Ch. 15 - The position of an object moving with simple...Ch. 15 - If an object of mass m attached to a light spring...Ch. 15 - You stand on the end of a diving board and bounce...Ch. 15 - A mass-spring system moves with simple harmonic...Ch. 15 - A block with mass m = 0.1 kg oscillates with...Ch. 15 - For a simple harmonic oscillator, answer yes or no...Ch. 15 - The top end of a spring is held fixed. A block is...Ch. 15 - Which of the following statements is not true...Ch. 15 - A simple pendulum has a period of 2.5 s. (i) What...Ch. 15 - A simple pendulum is suspended from the ceiling of...Ch. 15 - A particle on a spring moves in simple harmonic...Ch. 15 - You are looking at a small, leafy tree. You do not...Ch. 15 - Prob. 15.2CQCh. 15 - If the coordinate of a particle varies as x = -A...Ch. 15 - A pendulum bob is made from a sphere filled with...Ch. 15 - Figure CQ15.5 shows graphs of the potential energy...Ch. 15 - A student thinks that any real vibration must be...Ch. 15 - The mechanical energy of an undamped block-spring...Ch. 15 - Is it possible to have damped oscillations when a...Ch. 15 - Will damped oscillations occur for any values of b...Ch. 15 - If a pendulum clock keeps perfect time al the base...Ch. 15 - Prob. 15.11CQCh. 15 - A simple pendulum can be modeled as exhibiting...Ch. 15 - Consider the simplified single-piston engine in...Ch. 15 - A 0.60-kg block attached to a spring with force...Ch. 15 - When a 4.25-kg object is placed on lop of a...Ch. 15 - A vertical spring stretches 3.9 cm when a 10-g...Ch. 15 - In an engine, a piston oscillates with simpler...Ch. 15 - The position of a particle is given by the...Ch. 15 - A piston in a gasoline engine is in simple...Ch. 15 - A 1.00-kg object is attached to a horizontal...Ch. 15 - A simple harmonic oscillator takes 12.0 s to...Ch. 15 - A 7.00-kg object is hung from the bottom end of a...Ch. 15 - At an outdoor market, a bunch of bananas attached...Ch. 15 - A vibration sensor, used in testing a washing...Ch. 15 - (a) A hanging spring stretches by 35.0 cm when an...Ch. 15 - Review. A particle moves along the x axis. It is...Ch. 15 - A ball dropped from a height of 4.00 m makes an...Ch. 15 - A particle moving along the x axis in simple...Ch. 15 - The initial position, velocity, and acceleration...Ch. 15 - A particle moves in simple harmonic motion with a...Ch. 15 - A 1.00-kg glider attached to a spring with a force...Ch. 15 - A 0.500-kg object attached to a spring with a...Ch. 15 - You attach an object to the bottom end of a...Ch. 15 - To test the resiliency of its bumper during...Ch. 15 - A 200-g block is attached to a horizontal spring...Ch. 15 - A block of unknown mass is attached to a spring...Ch. 15 - A block-spring system oscillates with an amplitude...Ch. 15 - A particle executes simple harmonic motion with an...Ch. 15 - The amplitude of a system moving in simple...Ch. 15 - A 50.0-g object connected to a spring with a force...Ch. 15 - A 2.00-kg object is attached to a spring and...Ch. 15 - A simple harmonic oscillator of amplitude A has a...Ch. 15 - Review. A 65.0-kg bungee jumper steps off a bridge...Ch. 15 - Review. A 0.250-kg block resting on a...Ch. 15 - Prob. 15.32PCh. 15 - While driving behind a car traveling at 3.00 m/s,...Ch. 15 - A seconds pendulum is one that moves through its...Ch. 15 - A simple pendulum makes 120 complete oscillations...Ch. 15 - A particle of mass m slides without friction...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - A physical pendulum in the form of a planar object...Ch. 15 - The angular position of a pendulum is represented...Ch. 15 - Consider the physical pendulum of Figure 15.16....Ch. 15 - Prob. 15.41PCh. 15 - A very light rigid rod of length 0.500 m extends...Ch. 15 - Review. A simple pendulum is 5.00 m long. What is...Ch. 15 - A small object is attached to the end of a string...Ch. 15 - A watch balance wheel (Fig. P15.25) has a period...Ch. 15 - A pendulum with a length of 1.00 m is released...Ch. 15 - A 10.6-kg object oscillates at the end of a...Ch. 15 - Show that the time rate of change of mechanical...Ch. 15 - Show that Equation 15.32 is a solution of Equation...Ch. 15 - A baby bounces up and down in her crib. Her mass...Ch. 15 - As you enter a fine restaurant, you realize that...Ch. 15 - A block weighing 40.0 N is suspended from a spring...Ch. 15 - A 2.00-kg object attached to a spring moves...Ch. 15 - Considering an undamped, forced oscillator (b =...Ch. 15 - Damping is negligible for a 0.150-kg object...Ch. 15 - The mass of the deuterium molecule (D2) is twice...Ch. 15 - An object of mass m moves in simple harmonic...Ch. 15 - Review. This problem extends the reasoning of...Ch. 15 - A small ball of mass M is attached to the end of a...Ch. 15 - Review. A rock rests on a concrete sidewalk. An...Ch. 15 - Four people, each with a mass of 72.4 kg, are in a...Ch. 15 - To account for the walking speed of a bipedal or...Ch. 15 - Prob. 15.63APCh. 15 - An object attached to a spring vibrates with...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - Review. A large block P attached to a light spring...Ch. 15 - A pendulum of length L and mass M has a spring of...Ch. 15 - A block of mass m is connected to two springs of...Ch. 15 - A horizontal plank of mass 5.00 kg and length 2.00...Ch. 15 - A horizontal plank of mass m and length L is...Ch. 15 - Review. A particle of mass 4.00 kg is attached to...Ch. 15 - A ball of mass m is connected to two rubber bands...Ch. 15 - Review. One end of a light spring with force...Ch. 15 - People who ride motorcycles and bicycles learn to...Ch. 15 - A simple pendulum with a length of 2.23 m and a...Ch. 15 - When a block of mass M, connected to the end of a...Ch. 15 - Review. A light balloon filled with helium of...Ch. 15 - Consider the damped oscillator illustrated in...Ch. 15 - A particle with a mass of 0.500 kg is attached to...Ch. 15 - Your thumb squeaks on a plate you have just...Ch. 15 - Review. A lobstermans buoy is a solid wooden...Ch. 15 - Prob. 15.82APCh. 15 - Two identical steel balls, each of mass 67.4 g,...Ch. 15 - A smaller disk of radius r and mass m is attached...Ch. 15 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 15 - Review. Why is the following situation impassible?...Ch. 15 - A block of mass M is connected to a spring of mass...Ch. 15 - Review. A system consists of a spring with force...Ch. 15 - A light, cubical container of volume a3 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small block of mass M = 850 g is placed on top of a larger block of mass 3M which is placed on a level frictionless surface and is attached to a horizontal spring of spring constant k = 3.5 N/m. The coefficient of static friction between the blocks is μ = 0.2. The lower block is pulled until the attached spring is stretched a distance D = 1.5 cm and released.Randomized Variables M = 850 gD = 1.5 cmk = 3.5 N/m a) Assuming the blocks are stuck together, what is the maximum magnitude of acceleration amax of the blocks in terms of the variables in the problem statement? b) Calculate a value for the magnitude of the maximum acceleration amax of the blocks in m/s2. c) Write an equation for the largest spring constant kmax for which the upper block does not slip.arrow_forwardA spring of unstretched length L and spring constant k is k attached to a wall and an object of mass M resting on a frictionless surface (see figure). The object is pulled such that M the spring is stretched a distance A then released. Let the +x- direction be to the right. L A What is the position function x (t) for the object? Take x = 0 to be the position of the object when the spring is relaxed, and sin(wr + ) x (t) = make the phase angle as simple as possible. 2 Incorrect 4 T, where T is 3 What is the velocity v, of the object at t = V3 Aw 2 the period? Write the expression using fractions, not Ux = decimal values. Incorrectarrow_forwardScientists have developed a clever way to measure a mass of virus using a spring. A cantilever beam in the scanning electron microscope image below is like a diving board, except that it is extremely small (a couple of micrometer). The cantilever beam with mass m can oscillate (imagine a vibrating diving board) and it can be modeled as a spring with a spring constant k. What you can measure experimentally is the frequency of oscillation of the cantilever first without the virus (f1) and after the virus had attached itself to the cantilever (f2). (a) Find the mass of virus from f1 and f2 (assume that we don’t know the spring constant k) (b) Suppose the mass of cantilever is 10.0 * 10^-16 g and a frequency of 2.00 * 10^15 Hz without the virus and 2.87 * 10^14 Hz with the virus. What is the mass of the virus?arrow_forward
- se Show that the (1, 0, 0) and (2, 0, 0) wave functions listed in Table 7.1 are properly normalized. CLarrow_forwardProblem 11: A small block of mass M= 350 g is placed on top of a larger block of mass 3M which is placed on a level frictionless surface and is attached to a horizontal spring of spring constant k = 1.9 N/m. The coefficient of static friction between the blocks is μ =0.2. The lower block is pulled until the attached spring is stretched a distance D = 2.5 cm and released. Randomized Variables M = 350 g D = 2.5 cm k = 1.9 N/m Part (a) Assuming the blocks are stuck together, what is the maximum magnitude of acceleration amax of the blocks in terms of the variables in the problem statement? amax = k D/(3 M+M ) ✓ Correct! Part (b) Calculate a value for the magnitude of the maximum acceleration amax of the blocks in m/s². ✓ Correct! | @mar= 0.03390 Part (c) Write an equation for the largest spring constant kmax for which the upper block does not slip. Kmax = μ (M +M) g/klarrow_forwardTwo pendulums have the same dimensions (length L) and total mass 1m2. Pendulum A is a very small ball swinging at the end of a uniform massless bar. In pendulum B, half the mass is in the ball and half is in the uniform bar. Find the period of each pendulum for small oscillations. Which one takes longer for a swing?arrow_forward
- In the experiment, you will study an oscillator called a "torsion pendulum." In this case, the restoring "force" is the torsion constant of the wire that suspends the weight X and the inertial term is the rotational inertia of the suspended mass. You will compare the periods of a suspended sphere and of a suspended cube. The rotational inertia of a sphere is Is = 1/10msD^2, where ms is the mass of the sphere and D is its diameter. The rotational inertia of a cube is Ic = 1/6mcS^2, where mc is the mass of the cube and S is the length of its side. If the cube and the sphere are suspended from the same wire, what is the expected ratio of their periods, Tc/Ts? Assume that D = S, ms = 0.20kg, and mc = 0.5 kg.arrow_forwardThe figure below shows a piston from your car engine. Don't worry, you will not be required to understand an internal combustion engine for this problem. Instead, we simply notice that the up/down motion of the piston is exactly described as Simple Harmonic Motion. The tachometer on your dashboard tells you that your engine is turning at w = 1660 rpm (revolutions/minute). The owner's manual for your car tells you that the amplitude of the motion of the piston is Ymax = A = 0.099 meters. Simple Harmonic Motion wrist pin 500 grams Crankshaft A (top of stroke) B (midpoint) -C (bottom of stroke) y=-A y=+A Determine all the following: The angular frequency in proper units w = The period of the piston, T = The frequency of the piston, f = The maximum velocity of the piston, Vmax = meters/sec The piston velocity when y = 58% of full stroke, v(y = 0.58 Ymax) = seconds Hz rad/sec meters/secarrow_forwardTwo pendulums have the same dimensions (length L) and total mass (m). Pendulum A is a very small ball swinging at the end of a uniform massless bar. In pendulum B, half the mass is in the ball and half is in the uniform bar. Find the period of pendulum B for small oscillations. Express your answer in terms of the variables L, m, and appropriate constants.arrow_forward
- The cylinder is confined by the brake as shown in (Figure 1), where = 0.4. The spring has a stiffness of k= 3 MN/m and an unstretched length of 60 mm. End C of member ABC slides freely along the smooth vertical guide. Figure 400 mm. 200 mm 250 mm 1 of 1 Determine the required compression in the spring in order to resist a torque of 800 Nm on the cylinder. Express your answer to three significant figures and include the appropriate units. S= ■ Value Submit μÅ Provide Feedback Request Answer → Units ?arrow_forwardA physical pendulum starts moving from a position in which its center of mass is directly above the suspension point. The pendulum swings passing its equilibrium point with angular velocity w. Neglecting any friction, find the period of small oscillations of the pendulum. (Hint: the period of small oscillations need not be the same as the period of a large-amplitude oscillation described in the problem.) 2.4% π/W 47.3% 2π/wi 43.6% 4π/w 5.5% 8π/w Your Answerarrow_forwardA simple pendulum whose string measures l = 2 m and whose mass is 5 kg is displaced from its equilibrium position. until it forms an angle θ = π/16 with respect to the vertical and is then released. find: a) The period of the system. b) Make a graph of angular position v/s time where the amplitude, initial phase and system period.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY