Organic Chemistry: Principles And Mechanisms
Organic Chemistry: Principles And Mechanisms
2nd Edition
ISBN: 9780393663549
Author: KARTY, Joel
Publisher: W. W. Norton and Company
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 15, Problem 15.4P
Interpretation Introduction

Interpretation:

The approximate energy difference between the HOMO and LUMO is to be calculated for the given UV-vis spectrum.

Concept introduction:

UV-vis spectrum of a particular compound is a plot of relative absorbance against wavelength. The peak in the spectrum is called λmax (lambda-max), which shows the absorbance at the maximum wavelength. When electromagnetic radiations behave as a particle, radiation exists as photons. Each photon possesses a characteristic energy that depends only on its frequency (or wavelength) and is given by the equation:

Ephoton = h×νphoton= (h×c)/ λphoton. In UV–vis spectroscopy, the absorption of a photon typically corresponds to the promotion of an electron from an occupied MO (HOMO) to an unoccupied one (LUMO). The HOMO-LUMO transition requires the least energy, so it corresponds to the longest-wavelength UV-vis absorption. In other words, the longest-wavelength UV–vis absorption band corresponds to the HOMO–LUMO transition of the organic compound.

Blurred answer
Students have asked these similar questions
4) Which oxygen atom in the structure below is most basic / nucleophilic? Please explain by discussing the electron density around each oxygen atom. Show at least three resonance structures for the compound. оого
Can you show me this problem. Turn them into lewis dot structures for me please and then answer the question because I cant seem to comprehend it/ The diagrams on the picture look too small I guess.
The fire releases 2.80 x 107 Joules of heat energy for each liter of oil burned. The water starts out at 24.5 °C, raising the water's temperature up to 100 °C, and then raises the temperature of the resulting steam up to 325 °C. How many liters of water will be needed to absorb the heat from the fire in this way, for each 1.0 liter of crude oil burned? 4186 J/(kg°C) = heat of water 2020 J/(kg°C) = heat of steam 2,256,000 (i.e. 2.256 x 106) J/kg = latent heat of vaporization for water (at the boiling point of 100 °C).

Chapter 15 Solutions

Organic Chemistry: Principles And Mechanisms

Ch. 15 - Prob. 15.11PCh. 15 - Prob. 15.12PCh. 15 - Prob. 15.13PCh. 15 - Prob. 15.14PCh. 15 - Prob. 15.15PCh. 15 - Prob. 15.16PCh. 15 - Prob. 15.17PCh. 15 - Prob. 15.18PCh. 15 - Prob. 15.19PCh. 15 - Prob. 15.20PCh. 15 - Prob. 15.21PCh. 15 - Prob. 15.22PCh. 15 - Prob. 15.23PCh. 15 - Prob. 15.24PCh. 15 - Prob. 15.25PCh. 15 - Prob. 15.26PCh. 15 - Prob. 15.27PCh. 15 - Prob. 15.28PCh. 15 - Prob. 15.29PCh. 15 - Prob. 15.30PCh. 15 - Prob. 15.31PCh. 15 - Prob. 15.32PCh. 15 - Prob. 15.33PCh. 15 - Prob. 15.34PCh. 15 - Prob. 15.35PCh. 15 - Prob. 15.36PCh. 15 - Prob. 15.37PCh. 15 - Prob. 15.38PCh. 15 - Prob. 15.39PCh. 15 - Prob. 15.40PCh. 15 - Prob. 15.41PCh. 15 - Prob. 15.42PCh. 15 - Prob. 15.43PCh. 15 - Prob. 15.44PCh. 15 - Prob. 15.45PCh. 15 - Prob. 15.46PCh. 15 - Prob. 15.47PCh. 15 - Prob. 15.48PCh. 15 - Prob. 15.49PCh. 15 - Prob. 15.50PCh. 15 - Prob. 15.51PCh. 15 - Prob. 15.52PCh. 15 - Prob. 15.53PCh. 15 - Prob. 15.54PCh. 15 - Prob. 15.55PCh. 15 - Prob. 15.56PCh. 15 - Prob. 15.57PCh. 15 - Prob. 15.58PCh. 15 - Prob. 15.59PCh. 15 - Prob. 15.60PCh. 15 - Prob. 15.61PCh. 15 - Prob. 15.62PCh. 15 - Prob. 15.63PCh. 15 - Prob. 15.64PCh. 15 - Prob. 15.65PCh. 15 - Prob. 15.66PCh. 15 - Prob. 15.67PCh. 15 - Prob. 15.68PCh. 15 - Prob. 15.1YTCh. 15 - Prob. 15.2YTCh. 15 - Prob. 15.3YTCh. 15 - Prob. 15.4YTCh. 15 - Prob. 15.5YTCh. 15 - Prob. 15.6YTCh. 15 - Prob. 15.7YTCh. 15 - Prob. 15.8YTCh. 15 - Prob. 15.9YTCh. 15 - Prob. 15.10YTCh. 15 - Prob. 15.11YTCh. 15 - Prob. 15.12YTCh. 15 - Prob. 15.13YTCh. 15 - Prob. 15.14YTCh. 15 - Prob. 15.15YTCh. 15 - Prob. 15.16YTCh. 15 - Prob. 15.17YTCh. 15 - Prob. 15.18YTCh. 15 - Prob. 15.19YTCh. 15 - Prob. 15.20YTCh. 15 - Prob. 15.21YTCh. 15 - Prob. 15.22YTCh. 15 - Prob. 15.23YTCh. 15 - Prob. 15.24YTCh. 15 - Prob. 15.25YTCh. 15 - Prob. 15.26YTCh. 15 - Prob. 15.27YTCh. 15 - Prob. 15.28YTCh. 15 - Prob. 15.29YTCh. 15 - Prob. 15.30YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
IR Spectroscopy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=_TmevMf-Zgs;License: Standard YouTube License, CC-BY