Concept explainers
CALC A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x, t) = (5.60 cm) sin [(0.0340 rad/cm)x] sin [(50.0 rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the siring. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
UNIVERSITY PHYSICS UCI PKG
Additional Science Textbook Solutions
College Physics
The Cosmic Perspective
Physics (5th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Essential University Physics: Volume 1 (3rd Edition)
- As in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forwardWe do not need the analogy in Equation 16.30 to write expressions for the translational displacement of a pendulum bob along the circular arc s(t), translational speed v(t), and translational acceleration a(t). Show that they are given by s(t) = smax cos (smpt + ) v(t) = vmax sin (smpt + ) a(t) = amax cos(smpt + ) respectively, where smax = max with being the length of the pendulum, vmax = smax smp, and amax = smax smp2.arrow_forward
- An automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forwardA spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.50 N is applied. A 0.500-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (a) What is the force constant of the spring? (b) What are the angular frequency , the frequency, and the period of the motion? (c) What is the total energy of the system? (d) What is the amplitude of the motion? (c) What are the maximum velocity and the maximum acceleration of the particle? (f) Determine the displacement x of the particle from the equilibrium position at t = 0.500 s. (g) Determine the velocity and acceleration of the particle when t = 0.500 s.arrow_forwardA wave is described by y = 0.020 0 sin (kx - t), where k = 2.11 rad/m, = 3.62 rad/s, x and y are in meters, and t is in seconds. Determine (a) (he amplitude, (b) the wavelength, (c) the frequency, and (d) the speed of the wave.arrow_forward
- A block of mass M is connected to a spring of mass m and oscillates in simple harmonic motion on a frictionless, horizontal track (Fig. P12.69). The force constant of the spring is k, and the equilibrium length is . Assume all portions of the spring oscillate in phase and the velocity of a segment of the spring of length dx is proportional to the distance x from the fixed end; that is, vx = (x/) v. Also, notice that the mass of a segment of the spring is dm = (m/) dx. Find (a) the kinetic energy of the system when the block has a speed v and (b) the period of oscillation. Figure P12.69arrow_forwardA small object is attached to the end of a string to form a simple pendulum. The period of its harmonic motion is measured for small angular displacements and three lengths. For lengths of 1.000 m, 0.750 m, and 0.500 m, total time intervals for 50 oscillations of 99.8 s, 86.6 s, and 71.1s are measured with a stopwatch. (a) Determine the period of motion for each length. (b) Determine the mean value of g obtained from these three independent measurements and compare it with the accepted value. (c) Plot T2 versus L and obtain a value for g from the slope of your best-fit straight-line graph. (d) Compare the value found in part (c) with that obtained in part (b).arrow_forwardWhen a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forward
- Porpoises emit sound waves that they use for navigation. If the wavelength of the sound wave emitted is 4.5 cm, and the speed of sound in the water is v=1530 m/s, what is the period of the sound?arrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forwardQl: Consider the system shown in the figure which is excited from its base by a sinusoidal displacement y() =Ysin(ox) where Y is the amplitude of the base excitation, and wis the excitation frequency. k, = 1000 N/ m k k, = 200N/ m x(1) C =5Ns/m C2 m=1 kg v(1) a) Determine the equation of motion. b) Find the frequeney range at which the mass is vibrating with an amplitude of at least 0.05 m when Y =0.2m. Q2: Given: The single-degree-of-freedom system of interest is governed by the equation of motion: 3mä + 9kz = 2fofl cos Nt, where m denotes the system's effective mass, k denotes the system's effective stiffness, fo denotes the amplitude of an applied force, and N is the frequency of excitation. Find: (a) The natural frequency of the system; (b) The steady-state response of the system z,(t); andarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning