Concept explainers
Classify each of the following species as a Brønsted acid or base, or both: (a) H2O, (b) OH−, (c) H3O+, (d) NH3, (e)

Interpretation: Given set of species has to be classified as Bronsted acid or base, or both.
Concept Introduction: Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
Answer to Problem 15.3QP
The species (a) is both Bronsted acid and Bronsted base.
The species (b) is Bronsted base.
The species (c) is Bronsted acid.
The species (d) is Bronsted base.
The species (e) is Bronsted acid.
The species (f) is Bronsted base.
The species (g) is Bronsted base.
The species (h) is Bronsted base.
The species (i) is Bronsted acid.
The species (j) is Bronsted acid.
Explanation of Solution
(a)
To classify:
To identify the species as Bronsted acid.
Water molecule loses a proton to form a conjugate base as shown above. Therefore, water can act as Bronsted acid.
To identify the species as Bronsted base.
Water molecule accepts a proton to form hydronium ion. Therefore, water can act as Bronsted base.
From this we can conclude that water can act as both Bronsted acid and Bronsted base.
(b)
To classify:
To identify the species as Bronsted acid.
Hydroxide ion cannot lose a proton to form a conjugate base. Therefore, hydroxide ion cannot act as Bronsted acid.
To identify the species as Bronsted base.
Hydroxide ion accepts a proton to form water molecule. Therefore, hydroxide ion can act as Bronsted base.
From this we can conclude that hydroxide ion can only act as Bronsted base.
(c)
To classify:
To identify the species as Bronsted acid.
The hydronium ion can lose a proton to form a conjugate base as shown above. Therefore, hydronium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Hydronium ion cannot accept proton to form a conjugate acid.
From this we can conclude that hydronium ion can act only as Bronsted acid.
(d)
To classify:
To identify the species as Bronsted acid.
Ammonia cannot lose a proton to form a conjugate base. Therefore, ammonia cannot act as Bronsted acid.
To identify the species as Bronsted base.
Ammonia accepts a proton to form ammonium ion. Therefore, ammonia ion can act as Bronsted base.
From this we can conclude that ammonia can act only as Bronsted base.
(e)
To classify:
To identify the species as Bronsted acid.
The ammonium ion can lose a proton to form a conjugate base as shown above. Therefore ammonium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Ammonium ion cannot accept proton to form a conjugate acid.
From this we can conclude that ammonium ion can act only as Bronsted acid.
(f)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(g)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(h)
To classify:
To identify the species as Bronsted acid.
Explanation:
To identify the species as Bronsted base.
From this we can conclude that
(i)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
(j)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
The given set of species are classified as Bronsted acid or base, or both.
Want to see more full solutions like this?
Chapter 15 Solutions
AVC LOOSELEAF CHEMISTRY W/CONNECT 2 SEM
- + C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward→ Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Assign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forwarddescrive the energy levels of an atom and howan electron moces between themarrow_forwardRank each set of substituents using the Cahn-Ingold-Perlog sequence rules (priority) by numbering the highest priority substituent 1.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning





