The K a of a 0 .400 M formic acid HCOOH solution has to be calculated Concept Information: Acid ionization constant K a : The equilibrium expression for the reaction HA ( a q ) → H + ( a q ) + A - ( a q ) is given below. K a = [ H + ][A - ] [ HA] Where K a is acid ionization constant, [ H + ] is concentration of hydrogen ion, [ A - ] is concentration of acid anion, [ HA] is concentration of the acid Base ionization constant K b The equilibrium expression for the ionization of weak base B will be, B ( a q ) + H 2 O ( l ) → HB + ( a q ) + OH - ( a q ) K b = [ HB + ] [ OH - ] [ B ] Where K b is base ionization constant, [ OH − ] is concentration of hydroxide ion, [ HB + ] is concentration of conjugate acid, [ B] is concentration of the base Relationship between K a and K b K a × K b =K w
The K a of a 0 .400 M formic acid HCOOH solution has to be calculated Concept Information: Acid ionization constant K a : The equilibrium expression for the reaction HA ( a q ) → H + ( a q ) + A - ( a q ) is given below. K a = [ H + ][A - ] [ HA] Where K a is acid ionization constant, [ H + ] is concentration of hydrogen ion, [ A - ] is concentration of acid anion, [ HA] is concentration of the acid Base ionization constant K b The equilibrium expression for the ionization of weak base B will be, B ( a q ) + H 2 O ( l ) → HB + ( a q ) + OH - ( a q ) K b = [ HB + ] [ OH - ] [ B ] Where K b is base ionization constant, [ OH − ] is concentration of hydroxide ion, [ HB + ] is concentration of conjugate acid, [ B] is concentration of the base Relationship between K a and K b K a × K b =K w
Solution Summary: The author explains that the equilibrium expression for the ionization of weak base B is given below.
Definition Definition State where the components involved in a reversible reaction, namely reactants and product, do not change concentration any further with time. Chemical equilibrium results when the rate of the forward reaction becomes equal to the rate of the reverse reaction.
Chapter 15, Problem 15.138QP
Interpretation Introduction
Interpretation:
The Ka of a 0.400 M formic acid HCOOH solution has to be calculated
Concept Information:
Acid ionization constantKa:
The equilibrium expression for the reaction HA(aq)→H+(aq)+A-(aq) is given below.
Ka=[H+][A-][HA]
Where Ka is acid ionization constant, [H+] is concentration of hydrogen ion, [A-] is concentration of acid anion, [HA] is concentration of the acid
Base ionization constantKb
The equilibrium expression for the ionization of weak base B will be,
B(aq)+H2O(l)→HB+(aq)+OH-(aq)
Kb=[HB+][OH-][B]
Where Kb is base ionization constant, [OH−] is concentration of hydroxide ion, [HB+] is concentration of conjugate acid, [B] is concentration of the base
Predict the major organic product(s) of the following reactions. Indicate which of the following mechanisms is in operation: SN1, SN2, E1, or E2.
(c)
(4pts)
Mechanism:
heat
(E1)
CH3OH
+
1.5pts each
_E1 _ (1pt)
Br
CH3OH
(d)
(4pts)
Mechanism:
SN1
(1pt)
(e)
(3pts)
1111 I
H
10
Ill!!
H
LDA
THF (solvent)
Mechanism: E2
(1pt)
NC
(f)
Bri!!!!!
CH3
NaCN
(3pts)
acetone
Mechanism: SN2
(1pt)
(SN1)
-OCH3
OCH3
1.5pts each
2pts for either product
1pt if incorrect
stereochemistry
H
Br
(g)
“,、
(3pts)
H
CH3OH
+21
Mechanism:
SN2
(1pt)
H
CH3
2pts
1pt if incorrect
stereochemistry
H
2pts
1pt if incorrect
stereochemistry
A mixture of butyl acrylate and 4'-chloropropiophenone has been taken for proton NMR analysis. Based on this proton NMR, determine the relative percentage of each compound in the mixture
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.