Among the two given weak acids the stronger acid has to be identified under given concentrations. Concept Introduction: Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acids: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely. pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ]
Among the two given weak acids the stronger acid has to be identified under given concentrations. Concept Introduction: Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acids: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely. pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ]
Solution Summary: The author explains that strong acids undergo complete ionization, while weak acids do not. The molarity of each of the acids is determined using pH.
Among the two given weak acids the stronger acid has to be identified under given concentrations.
Concept Introduction:
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Weak acids:
In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium.
For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization.
In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely.
pH definition:
The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale.
The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration.
Draw the monomers required to synthesize this condensation polymer.
Draw the monomers required to synthesize this condensation polymer.
8:44 PM Sun Apr 13
Earn Freecash.com
O Measurement and Matter
=1
Setting up a unit conversion
110
Eddie says...
✰ www-awu.aleks.com
A student sets up the following equation to convert a measurement.
(The ? stands for a number the student is going to calculate.)
Fill in the missing part of this equation.
Note: your answer should be in the form of one or more fractions multiplied together.
(-
4
J
kJ
-7.0 × 10
☐ = ?
mmol.°C
mol °C
x10
μ
Explanation
Check
□·□
torox.io
Grey Hill LLC. All Rights
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell