Principles Of Geotechnical Engineering, Si Edition
Principles Of Geotechnical Engineering, Si Edition
9th Edition
ISBN: 9781305970953
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 15, Problem 15.27P
To determine

Find the minimum factor of safety Fs using the Bishop and Morgenstern’s method.

Expert Solution & Answer
Check Mark

Answer to Problem 15.27P

The the minimum factor of safety Fs using the Bishop and Morgenstern’s method is 1.19_.

Explanation of Solution

Given information:

The height (H) of the slope is 30 m.

The inclination β of a slope (3:1slope) is 18.43°.

The unit weight γ is 18kN/m3.

The angle of friction ϕ is 23°.

The cohesion c is 27kN/m2.

The value non-dimensional quantity ru is 0.5.

Calculation:

Determine the minimum factor of safety Fs from Table (15.5), using the procedure as follows:

  • Step 1. Obtain the values of angle of friction, inclination of a slope, and the value of cγH
  • Step 2. Obtain the value of nondimensional quantity.
  • Step 3. Refer Table (15.5) “Values of m and n for cγH=0” in the text book. Obtain the values of m and n for D=1,1.25,and1.5.
  • Step 4. calculate the factor of safety value, using the values of m and n for each value of D.
  • Finally, the required value of factor of safety is the smallest one obtained in step 4.

Trial 1:

Determine the value of cγH.

Substitute 27kN/m2 for c, 18kN/m3 for γ, and 30 m for H.

cγH=2718(30)=0.05

Refer Table (15.5d) “Stability coefficients m and n for cγH=0.05 and D=1.00” in the text book.

Take the stability coefficient m as 2.014 when the angle of friction ϕ is 22.5°.

Take the stability coefficient m as 2.193 when the angle of friction ϕ is 25°.

Determine the stability coefficient m when the angle of friction ϕ is 23° using the interpolation.

m=(2322.5)(2.1932.014)(2522.5)+2.014=2.049

Take the stability coefficient n as 1.568 when the angle of friction ϕ is 22.5°.

Take the stability coefficient n as 1.757 when the angle of friction ϕ is 25°.

Calculate the stability coefficient n when the angle of friction ϕ is 23° using the interpolation.

n=(2322.5)(1.7571.568)(2522.5)+1.568=1.606

Calculate the factor of safety using the formula.

Fs=mnru

Substitute 2.049 for m, 1.606 for n, and 0.5 for ru.

Fs=2.0491.606(0.5)=1.25

Trial 2:

Refer Table (15.5e) “Stability coefficients m and n for cγH=0.05 and D=1.25” in the text book.

Take the stability coefficient m as 2.024 when the angle of friction ϕ is 22.5°.

Take the stability coefficient m as 2.222 when the angle of friction ϕ is 25°.

Determine the stability coefficient m when the angle of friction ϕ is 23° using the interpolation.

m=(2322.5)(2.2222.024)(2522.5)+2.024=2.064

Take the stability coefficient n as 1.690 when the angle of friction ϕ is 22.5°.

Take the stability coefficient n as 1.897 when the angle of friction ϕ is 25°.

Determine the stability coefficient n when the angle of friction ϕ is 23° using the interpolation.

n=(2322.5)(1.8971.690)(2522.5)+1.690=1.731

Determine the factor of safety using the formula.

Fs=mnru

Substitute 2.064 for m, 1.731 for n, and 0.5 for ru.

Fs=2.0641.731(0.5)=1.19

Trial 3:

Refer Table (15.5f) “Stability coefficients m and n for cγH=0.05 and D=1.50” in the text book.

Take the stability coefficient m as 2.234 when the angle of friction ϕ is 22.5°.

Take the stability coefficient m as 2.467 when the angle of friction ϕ is 25°.

Calculate the stability coefficient m when the angle of friction ϕ is 23° using the interpolation.

m=(2322.5)(2.4672.234)(2522.5)+2.234=2.281

Take the stability coefficient n as 1.937 when the angle of friction ϕ is 22.5°.

Take the stability coefficient n as 2.179 when the angle of friction ϕ is 25°.

Calculate the stability coefficient n when the angle of friction ϕ is 23° using the interpolation.

n=(2322.5)(2.1791.937)(2522.5)+1.937=1.985

Calculate the factor of safety using the formula.

Fs=mnru

Substitute 2.281 for m, 1.985 for n, and 0.5 for ru.

Fs=2.2811.985(0.5)=1.29

The required value of factor of safety is the smallest one obtained from trial 2.

Thus, the minimum factor of safety Fs using the Bishop and Morgenstern’s method is 1.19_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For the setups (Case I and Case II) shown below calculate the Total and Pressure Heads at points A, B, and C. Also, determine the hydraulic gradient and pore water pressure at A. Note: Dotted area is a homogeneous soil. 5 m 1 m Datum 5 m 1m 3 m Case I י. 5 4m- C Case II 1 m D Datum
The following data is representative of that reported in an article on nitrogen emissions, with x = burner area liberation rate (MBtu/hr-ft²) and y = NOx emission rate (ppm): x 100 125 125 150 150 200 200 250 250 300 300 350 400 400 140 150 180 210 180 310 270 400 420 430 400 600 600 660 (a) Assuming that the simple linear regression model is valid, obtain the least squares estimate of the true regression line. (Round all numerical values to four decimal places.) y = (b) What is the estimate of expected NOx emission rate when burner area liberation rate equals 245? (Round your answer to two decimal places.) ppm (c) Estimate the amount by which you expect NO emission rate to change when burner area liberation rate is decreased by 50. (Round your answer to two decimal places.) ppm (d) Would you use the estimated regression line to predict emission rate for a liberation rate of 500? Why or why not? Yes, the data is perfectly linear, thus lending to accurate predictions. Yes, this value is…
5.25 Water from a pipe is diverted into a weigh tank for exactly 1 min. The increased weight in the tank is 80 kN. What is the discharge in cubic meters per second? Assume T = 20°C.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning