Principles Of Geotechnical Engineering, Si Edition
Principles Of Geotechnical Engineering, Si Edition
9th Edition
ISBN: 9781305970953
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
Question
Book Icon
Chapter 15, Problem 15.12P
To determine

Find the factor of safety Fs with respect to sliding.

Expert Solution & Answer
Check Mark

Answer to Problem 15.12P

The factor of safety Fs with respect to sliding is 2.25_.

Explanation of Solution

Given information:

The slope with an inclination β is 55°.

The unit weight γ of the soil is 121lb/ft3.

The angle of friction ϕ is 17°.

The cohesion c is 1,200lb/ft2.

The height (H) of the retaining wall is 45 ft.

Calculation:

Trial 1:

Consider the factor of safety as 2.

Determine the cohesion cd develop along the potential failure surface using the relation.

cd=cFs

Substitute 1,200lb/ft2 for c and 2.0 for Fs.

cd=1,2002.0=600lb/ft2

Determine the angle ϕd of friction that develops along the potential failure surface using the relation.

ϕd=tan1(tanϕFs)

Substitute 17° for ϕ and 2.0 for Fs.

ϕd=tan1(tan17°2.0)=tan1(0.153)=8.69°

Determine height of the slope that will have a factor of safety of 2.0 against sliding using the formula.

Hcr=4cdγ[sinβcosϕd1cos(βϕd)]

Substitute 600lb/ft2 for cd, 121lb/ft3 for γ, 55° for β, and 8.69° for ϕd.

Hcr=4(600)121[sin55°cos8.69°1cos(55°8.69°)]=19.835(0.810.31)=51.83ft

The height of the retaining wall is not equal to the calculated height of the wall.

51.83ft45ft

Hence, the assumption is incorrect.

Trial 2:

Consider the factor of safety as 2.5.

Determine the cohesion cd develop along the potential failure surface using the relation.

cd=cFs

Substitute 1,200lb/ft2 for c and 2.5 for Fs.

cd=1,2002.5=480lb/ft2

Determine the angle ϕd of friction that develops along the potential failure surface using the relation.

ϕd=tan1(tanϕFs)

Substitute 17° for ϕ and 2.5 for Fs.

ϕd=tan1(tan17°2.5)=tan1(0.1222)=6.97°

Determine height of the slope that will have a factor of safety of 2.0 against sliding using the formula.

Hcr=4cdγ[sinβcosϕd1cos(βϕd)]

Substitute 480lb/ft2 for cd, 121lb/ft3 for γ, 55° for β, and 6.97° for ϕd.

Hcr=4(480)121[sin55°cos6.97°1cos(55°6.97°)]=15.867(0.810.33)=38.94ft

The height of the retaining wall is not equal to the calculated height of the wall.

38.94ft45ft

Hence, the assumption is incorrect.

Trial 3:

Consider the factor of safety as 2.25.

Determine the cohesion cd develop along the potential failure surface using the relation.

cd=cFs

Substitute 1,200lb/ft2 for c and 2.25 for Fs.

cd=1,2002.25=533.33lb/ft2

Determine the angle ϕd of friction that develops along the potential failure surface using the relation.

ϕd=tan1(tanϕFs)

Substitute 17° for ϕ and 2.25 for Fs.

ϕd=tan1(tan17°2.25)=tan1(0.136)=7.74°

Determine height of the slope that will have a factor of safety of 2.25 against sliding using the formula.

Hcr=4cdγ[sinβcosϕd1cos(βϕd)]

Substitute 533.33lb/ft2 for cd, 121lb/ft3 for γ, 55° for β, and 7.74° for ϕd.

Hcr=4(533.33)121[sin55°cos7.74°1cos(55°7.74°)]=17.631(0.8120.32)=44.74ft45ft

The height of the retaining wall is equal to the calculated height of the wall.

45ft=45ft

Thus, the factor of safety with respect to sliding is 2.25_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A floor consists of 8 steel beams/girders supporting three 1-way slab panels. The   beams are supported on 6 columns around the perimeter of the roof. The roof is   subjected to a uniform pressure of 150 psf . All beams and girders weigh 90lb//ft.   Use free-body diagrams and statics equations to determine the load and reactions   on all the beams (Beam 1, 2, 3 and 4), girders (Girders 1 and 2), and columns   (Columns 1, 2 and 3).   (we only focused on one-way slabs in the class + pls include FBDs)
Design an intake tower with gates meet the following requirement: • Normal water surface elevation = 100 m mean sea level • Max. reservoir elevation = 106 m msl • Min. reservoir elevation = 90 m msl • Bottom elevation = 81m msl • Flow rate=57369.6 m³/day.. Velocity = 0.083 m/s ⚫c=0.6, Density for water =1000 kg/m³. Density for concrete =2310 kg/m³ Estimate water elevation that make safety factor =1 ร 4 m Uppr gate 2m 1 m Lower gate 2m Gate 6m 2m 4 m ร 2 m wz
4. The storm hyetograph below produced 530 acre-ft of runoff over the 725-acre Green River watershed. Plot the storm hyetograph and compute and plot the excess rainfall hyetograph using the op-index method. Time (hours) 0-33-66-99-12 12-15 Rainfall Intensity (in/hr) 0.2 0.8|1.2 1.8 0.9
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning