(a)
Interpretation:
The ratio of the dimer to monomers for
Concept introduction:
A dimer is an oligomer consisting of two monomers joined by bonds that can be strong or weak, covalent or the intermolecular. The dimer is a compound formed by the union of two radicals or two molecules of the simpler compound.
The reaction is represented as follows:
Thus, the equilibrium constant can be calculated as follows:
Here, n is the number of monomer units.
(b)
Interpretation:
The ratio of dimers to monomers for
Concept introduction:
A dimer is an oligomer consisting of two monomers joined by bonds that can be strong or weak, covalent or the intermolecular. The dimer is a compound formed by the union of two radicals or two molecules of the simpler compound.
The reaction is represented as follows:
Thus, the equilibrium constant can be calculated as follows:
Here, n is the number of monomer units.
(c)
Interpretation:
The reason due to which
Concept introduction:
A dimer is an oligomer consisting of two monomers joined by bonds that can be strong or weak, covalent or the intermolecular. The dimer is a compound formed by the union of two radicals or two molecules of the simpler compound.
The reaction is represented as follows:
Thus, the equilibrium constant can be calculated as follows:
Here, n is the number of monomer units.
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- Kc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardGaseous acetic acid molecules have a certain tendency to form dimers. (A dimer is a molecule formed by the association of two identical, simpler molecules.) The equilibrium constant Kc at 25C for this reaction is 3.2 104. a If the initial concentration of CH3COOH monomer (the simpler molecule) is 4.0 104 M, what are the concentrations of monomer and dimer when the system comes to equilibrium? (The simpler quadratic equation is obtained by assuming that all of the acid molecules have dimerized and then some of it dissociates to monomer.) b Why do acetic acid molecules dimerize? What type of structure would you draw for the dimer? c As the temperature increases would you expect the percentage of dimer to increase or decrease? Why?arrow_forward
- Show that the complete chemical equation, the total ionic equation, and the net ionic equation for the reaction represented by the equation KI(aq)+I2(aq)KI3(aq) give the same expression for the reaction quotient. KI3 is composed of the ions K+ and I3-.arrow_forwardA solution is prepared by dissolving 0.050 mol of diiodocyclohexane, C5H10I2, in the solvent CCl4.The total solution volume is 1.00 L When the reaction C6H10I2 C6H10 + I2 has come to equilibrium at 35 C, the concentration of I2 is 0.035 mol/L. (a) What are the concentrations of C6H10I2 and C6H10 at equilibrium? (b) Calculate Kc, the equilibrium constant.arrow_forwardThe decomposition of PCl5(g) to form PCl3(g) and Cl2(g) has Kc = 33.3 at a high temperature. If the initial concentration of PCl5 is 0.1000 M, what are the equilibrium concentrations of the reactants and products?arrow_forward
- Kc for the decomposition of ammonium hydrogen sulfide is 1.8 104 at 25 C. NH4HS(s) NH3(g) + H2S(g) (a) When the pure salt decomposes in a flask, what are the equilibrium concentrations of NH3 and H2S? (b) If NH4HS is placed in a flask already containing 0.020 mol/L of NH3 and then the system is allowed to come to equilibrium, what are the equilibrium concentrations of NH3 and H2S?arrow_forwardCyclohexane, C6H12, a hydrocarbon, can isomerize or change into methylcyclopentane, a compound of the same formula (C5H9CH3) but with a different molecular structure. sssss The equilibrium constant has been estimated to be 0.12 at 25 C. If you had originally placed 0.045 mol of cyclohexane in a 2.8-L flask, what would be the concentrations of cyclohexane and methylcyclopentane when equilibrium is established?arrow_forwardConsider 0.200 mol phosphorus pentachloride sealed in a 2.0-L container at 620 K. The equilibrium constant, Kc, is 0.60 for PCl5(g) PCl3(g) + Cl2(g) Calculate the concentrations of all species after equilibrium has been reached.arrow_forward
- Write the mathematical expression for the reaction quotient, QC, for each of the following reactions (a) N2(g)+3H2(g)2NH3(g) (b) 4NH3(g)+5O2(g)4NO(g)+6H2O(g) (C) N2O2(g)2NO2(g) (d) CO2(g)+H2CO(g)+H2O(g) (e) NH4CI(s)NH3(g)+HCI(g) (f) 2Pb( NO3)2(s)2PbO(s)+4NO2(g)+O2(g) (g) 2H2(g)+O2(g)2H2O(g) (h) S8(g)8S(g)arrow_forwardThe equilibrium constant Kc, for the reaction 2 NOCI(g) 2 NO(g) + Cl2(g) is 3.9 103 at 300 C. A mixture contains the gases at the following concentrations: [NOCl] = 5.0 103 mol/L, [NO] = 2.5 103 mol/L, and [Cl2] = 2.0 103 mol/L. Is the reaction at equilibrium at 300 C? If not, in which direction does the reaction proceed to come to equilibrium?arrow_forwardThe equilibrium constant for the dissociation of iodine molecules to iodine atoms I2(g) 2 I(g) is 3.76 103 at 1000 K. Suppose 0.105 mol of I2 is placed in a 12.3-L flask at 1000 K. What are the concentrations of I2 and I when the system comes to equilibrium?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning