The given hydroxyapatite [ C a 5 ( P O 4 ) 3 O H ] chemical function should be determined. Concept Introduction: Strength of acid The degree to which an acid produces hydrogen ion determines the strength of an acid. In other words, it refers to the tendency or ability of an acid to lose a proton. The strength of all the acids will not be same. The strength of an acid is measurable. Based on the strength of the acid, acids can be classified as strong acids and weak acids. Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acids: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely
The given hydroxyapatite [ C a 5 ( P O 4 ) 3 O H ] chemical function should be determined. Concept Introduction: Strength of acid The degree to which an acid produces hydrogen ion determines the strength of an acid. In other words, it refers to the tendency or ability of an acid to lose a proton. The strength of all the acids will not be same. The strength of an acid is measurable. Based on the strength of the acid, acids can be classified as strong acids and weak acids. Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acids: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely
Solution Summary: The author explains the chemical function of the given hydroxyapatite. The strength of an acid is measurable.
The given hydroxyapatite [Ca5(PO4)3OH] chemical function should be determined.
Concept Introduction:
Strength of acid
The degree to which an acid produces hydrogen ion determines the strength of an acid.
In other words, it refers to the tendency or ability of an acid to lose a proton. The strength of all the acids will not be same. The strength of an acid is measurable.
Based on the strength of the acid, acids can be classified as strong acids and weak acids.
Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent.
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Weak acids:
In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium.
For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization.
In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely
3. Two solutions are prepared using the same solute:
Solution A: 0.14 g of the solute dissolves in 15.4 g of t-butanol
Solution B: 0.17 g of the solute dissolves in 12.7 g of cyclohexane
Which solution has the greatest freezing point change? Show calculations and explain.
2. Give the ground state electron configuration (e.g., 02s² σ*2s² П 2p²) for these molecules and deduce
its bond order.
Ground State Configuration
Bond Order
H2+
02-
N2
1. This experiment is more about understanding the colligative properties of a solution rather than the determination of
the molar mass of a solid.
a. Define colligative properties.
b. Which of the following solutes has the greatest effect on the colligative properties for a given mass of pure water?
Explain.
(i) 0.01 mol of CaCl2
(ii) 0.01 mol of KNO3
(iii) 0.01 mol of CO(NH2)2
(an electrolyte)
(an electrolyte)
(a nonelectrolyte)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell