Among the two given weak acids the stronger acid has to be identified under given concentrations. Concept Introduction: Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acids: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely. pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ]
Among the two given weak acids the stronger acid has to be identified under given concentrations. Concept Introduction: Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acids: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely. pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ]
Solution Summary: The author explains that strong acids undergo complete ionization, while weak acids do not. The molarity of each of the acids is determined using pH.
Among the two given weak acids the stronger acid has to be identified under given concentrations.
Concept Introduction:
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Weak acids:
In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium.
For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization.
In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely.
pH definition:
The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale.
The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration.
46. Consider an ideal gas that occupies 2.50 dm³ at a pressure of 3.00 bar. If the gas is
compressed isothermally at a constant external pressure so that the final volume is 0.500 dm³,
calculate the smallest value Rest can have. Calculate the work involved using this value of Rext.
None
2010. Suppose that a 10 kg mass of iron at 20 C is dropped from a heigh of 100 meters. What is
the kinetics energy of the mass just before it hits the ground, assuming no air resistance? What is
its speed? What would be the final temperature of the mass if all the kinetic energy at impact is
transformed into internal energy? The molar heat capacity of iron is Cpp = 25.1J mol-¹ K-1
and the gravitational acceleration constant is 9.8 m s¯² |
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell