
Concept explainers
Classify each of the following species as a Brønsted acid or base, or both: (a) H2O, (b) OH−, (c) H3O+, (d) NH3, (e)

Interpretation: Given set of species has to be classified as Bronsted acid or base, or both.
Concept Introduction: Bronsted's definition is based on the chemical reaction that occurs when both acids and bases are added with each other. In Bronsted's theory acid donates proton, while base accepts proton from acid resulting in the formation of water.
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.
Answer to Problem 15.3QP
The species (a) is both Bronsted acid and Bronsted base.
The species (b) is Bronsted base.
The species (c) is Bronsted acid.
The species (d) is Bronsted base.
The species (e) is Bronsted acid.
The species (f) is Bronsted base.
The species (g) is Bronsted base.
The species (h) is Bronsted base.
The species (i) is Bronsted acid.
The species (j) is Bronsted acid.
Explanation of Solution
(a)
To classify:
To identify the species as Bronsted acid.
Water molecule loses a proton to form a conjugate base as shown above. Therefore, water can act as Bronsted acid.
To identify the species as Bronsted base.
Water molecule accepts a proton to form hydronium ion. Therefore, water can act as Bronsted base.
From this we can conclude that water can act as both Bronsted acid and Bronsted base.
(b)
To classify:
To identify the species as Bronsted acid.
Hydroxide ion cannot lose a proton to form a conjugate base. Therefore, hydroxide ion cannot act as Bronsted acid.
To identify the species as Bronsted base.
Hydroxide ion accepts a proton to form water molecule. Therefore, hydroxide ion can act as Bronsted base.
From this we can conclude that hydroxide ion can only act as Bronsted base.
(c)
To classify:
To identify the species as Bronsted acid.
The hydronium ion can lose a proton to form a conjugate base as shown above. Therefore, hydronium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Hydronium ion cannot accept proton to form a conjugate acid.
From this we can conclude that hydronium ion can act only as Bronsted acid.
(d)
To classify:
To identify the species as Bronsted acid.
Ammonia cannot lose a proton to form a conjugate base. Therefore, ammonia cannot act as Bronsted acid.
To identify the species as Bronsted base.
Ammonia accepts a proton to form ammonium ion. Therefore, ammonia ion can act as Bronsted base.
From this we can conclude that ammonia can act only as Bronsted base.
(e)
To classify:
To identify the species as Bronsted acid.
The ammonium ion can lose a proton to form a conjugate base as shown above. Therefore ammonium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Ammonium ion cannot accept proton to form a conjugate acid.
From this we can conclude that ammonium ion can act only as Bronsted acid.
(f)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(g)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(h)
To classify:
To identify the species as Bronsted acid.
Explanation:
To identify the species as Bronsted base.
From this we can conclude that
(i)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
(j)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
The given set of species are classified as Bronsted acid or base, or both.
Want to see more full solutions like this?
Chapter 15 Solutions
Chemistry
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning





