Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 14FTD
Is the flow speed behind a wind turbine greater or less than in front? Is the pressure behind the turbine higher or lower than in front? Is this a violation of Bernoulli’s principle? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Essential University Physics (3rd Edition)
Ch. 15.1 - What quantity of water has the same mass as 1 m3...Ch. 15.2 - Neglecting friction and other nonconservative...Ch. 15.3 - The density of a rubber ball is three-fifths that...Ch. 15.4 - The photo shows smoke particles tracing...Ch. 15.5 - A large tank is filled with liquid to the level h1...Ch. 15 - Why do your ears pop when you drive up a mountain?Ch. 15 - Commercial aircraft cabins are usually pressurized...Ch. 15 - Water pressure at the bottom of the ocean arises...Ch. 15 - The three containers in Fig. 15.22 are filled to...Ch. 15 - Why is it easier to float in the ocean than in...
Ch. 15 - Figure 15.23 shows a cork suspended from the...Ch. 15 - Meteorologists in the United States usually report...Ch. 15 - A mountain stream, frothy with entrained air...Ch. 15 - Why are dams thicker at the bottom than at the...Ch. 15 - Its not possible to breathe through a snorkel from...Ch. 15 - A helium-filled balloon stops rising long before...Ch. 15 - A barge filled with steel beams overturns in a...Ch. 15 - Why do airplanes take off into the wind?Ch. 15 - Is the flow speed behind a wind turbine greater or...Ch. 15 - The density of molasses is 1600kg/m3. Find the...Ch. 15 - Atomic nuclei have densities around 1017kg/m3,...Ch. 15 - Compressed air with mass 8.8 kg is stored in a...Ch. 15 - The pressure unit torr is defined as the pressure...Ch. 15 - Measurement of small pressure differencesfor...Ch. 15 - Whats the weight of a column of air with...Ch. 15 - A 4680-kg circus elephant balances on one foot. If...Ch. 15 - You unbend a paper clip made from 1.5-mm-diameter...Ch. 15 - Whats the density of a fluid whose pressure...Ch. 15 - A research submarine can withstand an external...Ch. 15 - Prob. 25ECh. 15 - A vertical tube open at the top contains 5.0 cm of...Ch. 15 - A child attempts to drink water through a...Ch. 15 - Barometric pressure in the eye of a hurricane is...Ch. 15 - Prob. 29ECh. 15 - A 5.4-g jewel has apparent weight 32 mN when...Ch. 15 - Styrofoams density is 160kg/m3. What percent error...Ch. 15 - A steel drum has volume 0.23 m3 and mass 16 kg....Ch. 15 - Water flows through a 2.5-cm-diameter pipe at 1.8...Ch. 15 - Show that pressure has the units of energy...Ch. 15 - A typical mass flow rate for the Mississippi River...Ch. 15 - Prob. 36ECh. 15 - A typical human aorta, the main artery from the...Ch. 15 - When a couple with total mass 120 kg lies on a...Ch. 15 - A fully loaded Volvo station wagon has mass 1950...Ch. 15 - Youre stuck in the exit row on a long flight, and...Ch. 15 - A vertical tube 1.0 cm in diameter and open at the...Ch. 15 - Dam breaks present a serious risk of widespread...Ch. 15 - A U-shaped tube open at both ends contains water...Ch. 15 - Prob. 44PCh. 15 - A garage lift has a 45-cm-diameter piston...Ch. 15 - Archimedes purportedly used his principle to...Ch. 15 - Youre testifying in a drunk-driving case for which...Ch. 15 - A glass beaker measures 14 cm high by 5.0 cm in...Ch. 15 - A typical supertanker has mass 2.0 106 kg and...Ch. 15 - A balloon contains gas of density and is to lift a...Ch. 15 - (a) How much helium (density 0.18 kg/m3) is needed...Ch. 15 - A 55-kg swimmer climbs onto a Styrofoam block of...Ch. 15 - If the blood pressure in the unobstructed artery...Ch. 15 - Youre a consultant for maple syrup producers. They...Ch. 15 - The water in a garden hose is at 140-kPa gauge...Ch. 15 - The venturi flowmeter shown in Fig. 15.26 is used...Ch. 15 - A 1.0-cm-diameter venturi flowmeter is inserted in...Ch. 15 - A balloons mass is 1.6 g when its empty. Its...Ch. 15 - Blood with density 1.06 g/cm3 and 10-kPa gauge...Ch. 15 - Prob. 60PCh. 15 - A drinking straw 20 cm long and 3.0 mm in diameter...Ch. 15 - In 2012, film producer James Cameron (Terminator,...Ch. 15 - Prob. 63PCh. 15 - Water emerges from a faucet of diameter d0 in...Ch. 15 - Assuming norm.nl atmospheric pressure, how massive...Ch. 15 - Figure 15.28 shows a simplified diagram of a Pitot...Ch. 15 - At a hearing on a proposed wind farm, a...Ch. 15 - A pencil is weighted so it floats vertically with...Ch. 15 - A can of height h and cross-sectional area A0 is...Ch. 15 - Density and pressure in Earths atmosphere are...Ch. 15 - (a) Use the result of Problem 70 to express...Ch. 15 - A circular pan of liquid with density is centered...Ch. 15 - A solid sphere of radius R and mass M has density ...Ch. 15 - The difference in air pressure between the inside...Ch. 15 - Find the torque that the water exerts about the...Ch. 15 - One vertical wall of a swimming pool is a regular...Ch. 15 - Youre a private investigator assisting a large...Ch. 15 - A plumber conies to your ancient apartment...Ch. 15 - Your class in naval architecture is working on the...Ch. 15 - Prob. 80PPCh. 15 - Prob. 81PPCh. 15 - Prob. 82PPCh. 15 - Prob. 83PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
*Speedomter The speedometer on an automobile measures the rotational speed of the axie and converts that to a l...
College Physics
The change in the electric potential energy when charge moved 5.75 cm in the positive x direction.
Physics (5th Edition)
86. You're in a car traveling on a highway at some specified speed limit. You see another car moving at the sam...
Conceptual Physical Science (6th Edition)
Choose the best answer to each of the following. Explain your reasoning. 9.If you had been present in the unive...
Cosmic Perspective Fundamentals
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
An arrow fired horizontally at 41 m/s travels 23 m horizontally. From what height was it fired?
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the Reynolds numbers for the flow of water through (a) a nozzle with a radius of 0.250 cm and (b) a garden hose with a radius of 0.900 cm, when the nozzle is attached to the hose. The flow rate through hose and nozzle is 0.500 us. Can the flow in either possibly be laminar?arrow_forwardLiquid toxic waste with a density of 1752 kg/m3 is flowing through a section of pipe with a radius of 0.312 m at a velocity of 1.64 m/s. a. What is the velocity of the waste after it goes through a constriction and enters a second section of pipe with a radius of 0.222 m? b. If the waste is under a pressure of 850,000 Pa in the first section of pipe, what is the pressure in the second (constricted) section of pipe?arrow_forward(a) Verify that a 19.0% decrease in laminar flow through a tube is caused by a 5.00% decrease in radius, assuming that all other factors remain constant, as stated in the text. (b) What increase in flow is obtained from a 5.00% increase in radius, again assuming all other factors remain constant?arrow_forward
- Water flows through a pipe that gradually descends from a height of 6.78 m to the ground. Near the top, the cross-sectional area is 0.400 m2, and the pipe gradually widens so that its area near the ground is 0.800 m2. Water leaves the pipe at a speed of 16.8 m/s. What is the difference in the water pressure between the top and bottom of the pipe?arrow_forwardA large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forward(a) What is the pressure drop due to the Bernoulli effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 L/S? (b) To what maximum height above the nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)arrow_forward
- (a) Suppose a blood vessel's radius is decreased to 90.0% of its original value by plaque deposits and the body compensates by increasing the pressure difference along the vessel to keep the flow rate constant. By what factor must the pressure difference increase? (b) If turbulence is created by the obstruction, what additional effect would it have on the flow rate?arrow_forwardReview. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forwardGasoline is piped underground from refineries to major users. The flow rate is 3.00102 m3/s (about 500 gal/ min), the viscosity of gasoline is 1.00103 (N/m2) s, and its density is 680 kg/m3. (a) What minimum diameter must the pipe have if the Reynolds number is to be less than 2000? (b) What pressure difference must be maintained along each kilometer of the pipe to maintain this flow rate?arrow_forward
- Concrete is pumped from a cement mixer to the place it is being laid, instead of being carried in wheelbarrows. The flow rate is 200.0 L/min through a 50.0-m-long, 8.00-cm-diameter hose, and the pressure at the pump is 8.00106 N/m2. Verify that the flow of concrete is laminar taking concrete's viscosity to be 48.0 (N/m2) s, and given its density is 2300 kg/m3.arrow_forward(a) What is the fluid speed in a fire hose with a 9.00-cm diameter carrying 80.0 L of water per second? (b) What is the flow rate in cubic meters per second? (c) Would your answers be different if salt water replaced the fresh water in the fire hose?arrow_forwardAn incompressible, nonviscous fluid is initially at rest in the vertical portion of the pipe shown in Figure P15.61a, where L = 2.00 m. When the valve is opened, the fluid flows into the horizontal section of the pipe. What is the fluids speed when all the fluid is in the horizontal section as shown in Figure P15.61b? Assume the cross-sectional area of the entire pipe is constant. Figure P15.61arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY