An acid is titrated with NaOH. The following beakers are illustrations of the contents of the beaker at various times during the titration. These are presented out of order. Note: Counter-ions and water molecules have been omitted from the illustrations for clarity.
(a)
(b)
(c)
(d)
(e)
a. Is the acid a weak or strong acid? How can you tell?
b. Arrange the beakers in order of what the contents would look like as the titration progresses.
c. For which beaker would pH = pKa? Explain your answer.
d. Which beaker represents the equivalence point of the titration? Explain your answer.
e. For which beaker would the Ka value for the acid not be necessary to determine the pH? Explain your answer.
Trending nowThis is a popular solution!
Chapter 15 Solutions
Chemistry
Additional Science Textbook Solutions
Organic Chemistry
CHEMISTRY-TEXT
Basic Chemistry (5th Edition)
General, Organic, and Biological Chemistry - 4th edition
- Four different substances of the generalized formula HA were dissolved in water, with the results shown in the diagrams. Which of the diagrams represents the substance that is the strongest electrolyte?arrow_forward. How is the strength of an acid related to the fact that a competition for protons exists in aqueous solution between water molecules and the anion of the acid?arrow_forwardWhen might a pH meter be better than an indicator to determine the end point of an acid-base titration?arrow_forward
- Repeat the description for Question 4, but use a weak acid rather than a strong one.arrow_forwardConsider a solution prepared by mixing a weak acid HA. HCl, and NaA. Which of the following statements best describes what happens? a. The H+ from the HCl reacts completely with the A from the NaA. Then the HA dissociates somewhat. b. The H+ from the HCl reacts somewhat with the A from the NaA to make HA, while the HA is dissociating. Eventually you have equal amounts of everything. c. The H+ from the HCl reacts somewhat with the A from the NaA to make HA while the HA is dissociating. Eventually all the reactions have equal rates. d. The H+ from the HCl reacts completely with the A from the NaA. Then the HA dissociates somewhat until too much H+ and A are formed, so the H+ and A react to form HA, and so on. Eventually equilibrium is reached. Justify your choice, and for choices you did not pick, explain what is wrong with them.arrow_forwardA weak acid, HA, is dissolved in water. Which one of the following beakers represents the resulting solution? (Water molecules have been omitted for clarity.)arrow_forward
- What is an acidbase indicator? Define the equivalence (stoichiometric) point and the end point of a titration. Why should you choose an indicator so that the two points coincide? Do the pH values of the two points have to be within 0.01 pH unit of each other? Explain.arrow_forwardWhat is the freezing point of vinegar, which is an aqueous solution of 5.00% acetic acid, HC2H3O2, by mass (d=1.006g/cm3)?arrow_forwardStrong Acids, Weak Acids, and pH Two 0.10-mol samples of the hypothetical monoprotic acids HA(aq) and HB(aq) are used to prepare 1.0-L stock solutions of each acid. a Write the chemical reactions for these acids in water. What are the concentrations of the two acid solutions? b One of these acids is a strong acid, and one is weak. What could you measure that would tell you which acid was strong and which was weak? c Say that the HA(aq) solution has a pH of 3.7. Is this the stronger of the two acids? How did you arrive at your answer? d What is the concentration of A(aq) in the HA solution described in part c? e If HB(aq) is a strong acid, what is the hydronium-ion concentration? f In the solution of HB(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), B(aq), HB(aq), or OH(aq)? How did you decide? g In the solution of HA(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), A+(aq), HA(aq), or OH(aq)? How did you decide? h Say you add 1.0 L of pure water to a solution of HB. Would this water addition make the solution more acidic, make it less acidic, or not change the acidity of the original solution? Be sure to fully justify your answer. i You prepare a 1.0-L solution of HA. You then take a 200-mL sample of this solution and place it into a separate container. Would this 200 mL sample be more acidic, be less acidic, or have the same acidity as the original 1.0-L solution of HA(aq)? Be sure to support your answer.arrow_forward
- . Which component of a buffered solution is capable of combining with an added strong acid? Using your example from Exercise 60, show how this component would react with added HC1.arrow_forward. Using Fig. 16.3, list the approximate pH value of live “everyday” solutions. How do the familiar properties (such as the sour taste for acids) of these solutions correspond to their indicated pH?arrow_forwardA student prepares 455 mL of a KOH solution, but neglects to write down the mass of KOH added. His TA suggests that he take the pH of the solution. The pH is 13.33. How many grams of KOH were added?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning