University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 12CQ
Can this analogy of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
University Physics Volume 1
Ch. 15 - Check Your Understanding Why would it hurt more if...Ch. 15 - Check Your Understanding Identify one way you...Ch. 15 - Check Your Understanding Identify an object that...Ch. 15 - Check Your Understanding An engineer builds two...Ch. 15 - Check Your Understanding Why are completely...Ch. 15 - Check Your Understanding A famous magic trick...Ch. 15 - What conditions must be met to produce SHM?Ch. 15 - (a) If frequency is not constant for some...Ch. 15 - Give an example of a simple harmonic oscillator,...Ch. 15 - Explain why you expect an object made of a stiff...
Ch. 15 - As you pass a freight truck with a trailer on a...Ch. 15 - Some people modify cars to be much closer to the...Ch. 15 - Describe a system in which elastic potential...Ch. 15 - Explain in terms of energy how dissipative forces...Ch. 15 - The temperature of the atmosphere oscillates from...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - Can this analogy of SHM to circular motion be...Ch. 15 - A pendulum clock works by measuring the period of...Ch. 15 - With the use of a phase shift, the position of an...Ch. 15 - Give an example of a damped harmonic oscillator....Ch. 15 - How would a car bounce after a bump under each of...Ch. 15 - Most harmonic oscillators are damped and, if...Ch. 15 - Why are soldiers in general ordered to “route...Ch. 15 - Do you think there is any harmonic motion in the...Ch. 15 - Some engineers use sound to diagnose performance...Ch. 15 - Prove that using x(t)=Asin(t+) will produce the...Ch. 15 - What is the period of 60.0 Hz of electrical power?Ch. 15 - If your heart rate is 150 beats per minute during...Ch. 15 - Find the frequency of a tuning fork that takes...Ch. 15 - A stroboscope is set to flash every 8.00105 s....Ch. 15 - A tire has a tread pattern with a crevice every...Ch. 15 - Each piston of an engine makes a sharp sound every...Ch. 15 - A type of cuckoo clock keeps time by having a mass...Ch. 15 - A mass m0is attached to a spring and hung...Ch. 15 - A 0.500-kg mass suspended from a spring oscillates...Ch. 15 - By how much leeway (both percentage and mass)...Ch. 15 - Fish are hung on a spring scale to determine their...Ch. 15 - It is weigh-in time for the local under-85-kg...Ch. 15 - One type of BB gun uses a spring-driven plunger to...Ch. 15 - When an 80.0-kg man stands on a pogo stick, the...Ch. 15 - A spring has a length of 0.200 m when a 0.300-kg...Ch. 15 - The length of nylon rope from which a mountain...Ch. 15 - The motion of a mass on a spring hung vertically,...Ch. 15 - (a) A novelty clock has a 0.0100-kg-mass object...Ch. 15 - Reciprocating motion uses the rotation of a motor...Ch. 15 - A student stands on the edge of a merry-go-round...Ch. 15 - What is the length of a pendulum that has a period...Ch. 15 - Some people think a pendulum with a period of 1.00...Ch. 15 - What is the period of a 1.00-m-long pendulum?Ch. 15 - How long does it take a child on a swing to...Ch. 15 - The pendulum on a cuckoo clock is 5.00-cm long....Ch. 15 - Two parakeets sit on a swing with their combined...Ch. 15 - (a) A pendulum that has a period of 3.00000 s and...Ch. 15 - A pendulum with a period of 2.00000 s in one...Ch. 15 - (a) What is the effect on the period of a pendulum...Ch. 15 - The amplitude of a lightly damped oscillator...Ch. 15 - How much energy must the shock absorbers of a...Ch. 15 - If a car has a suspension system with a force...Ch. 15 - (a) How much will a spring that has a force...Ch. 15 - Suppose you have a 0.750-kg object on a horizontal...Ch. 15 - Suppose you attach an object with mass m to a...Ch. 15 - A diver on a diving board is undergoing SHM. Her...Ch. 15 - Suppose a diving board with no one on it bounces...Ch. 15 - The device pictured in the following figure...Ch. 15 - A mass is placed on a frictionless, horizontal...Ch. 15 - Find the ratio of the new/old periods of a...Ch. 15 - At what rate will a pendulum clock run on the...Ch. 15 - If a pendulum-driven clock gains 5.00 s/day, what...Ch. 15 - A 2.00-kg object hangs, at rest, on a 1.00-m-long...Ch. 15 - A 2.00-kg object hangs, at rest, on a 1.00-m-long...Ch. 15 - Assume that a pendulum used to drive a grandfather...Ch. 15 - A 2.00-kg block lies at rest on a frictionless...Ch. 15 - A suspension bridge oscillates with an effective...Ch. 15 - Near the top of the Citigroup Center building in...Ch. 15 - Parcels of air (small volumes of air) in a stable...Ch. 15 - Consider the van der Waals potential U(r)=U0[( R 0...Ch. 15 - Suppose the length of a clock’s pendulum is...Ch. 15 - (a) The springs of a pickup truck act like a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How much of the entire Moon’s surface is illuminated by the Sun during this phase (circle one)?
None of the sur...
Lecture- Tutorials for Introductory Astronomy
Briefly describe the astrometric, Doppler, and transit methods for detecting extrasolar planets. Summarize the ...
Life in the Universe (4th Edition)
* Stamp collector A stamp collector is viewing a stamp through a magnifying glass of 5.0-cm focal length. Deter...
College Physics
31. (Il) A rescue plane wants to drop supplies to isolated mountain climbers on a rocky ridge 235 m below. If t...
Physics: Principles with Applications
The way by which a nail rusting in air follow the law of conservation of mass.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
43. Alligators and other reptiles don’t use enough metabolic energy to keep their body temperatures constant. T...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small object is attached to the end of a string to form a simple pendulum. The period of its harmonic motion is measured for small angular displacements and three lengths. For lengths of 1.000 m, 0.750 m, and 0.500 m, total time intervals for 50 oscillations of 99.8 s, 86.6 s, and 71.1s are measured with a stopwatch. (a) Determine the period of motion for each length. (b) Determine the mean value of g obtained from these three independent measurements and compare it with the accepted value. (c) Plot T2 versus L and obtain a value for g from the slope of your best-fit straight-line graph. (d) Compare the value found in part (c) with that obtained in part (b).arrow_forwardDetermine the angular frequency of oscillation of a thin, uniform, vertical rod of mass m and length L pivoted at the point O and connected to two springs (Fig. P16.78). The combined spring constant of the springs is k(k = k1 + k2), and the masses of the springs are negligible. Use the small-angle approximation (sin ). FIGURE P16.78arrow_forwardAn automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forward
- Consider a graphical representation (Fig. 12.3) of simple harmonic motion as described mathematically in Equation 12.6. When the particle is at point on the graph, what can you say about its position and velocity? (a) The position and velocity are both positive. (b) The position and velocity are both negative. (c) The position is positive, and the velocity is zero. (d) The position is negative, and the velocity is zero. (e) The position is positive, and the velocity is negative. (f) The position is negative, and the velocity is positive. Figure 12.3 (Quick Quiz 12.2) An xt graph for a particle undergoing simple harmonic motion. At a particular time, the particles position is indicated by in the graph.arrow_forwardDetermine the period of oscillation of a simple pendulum of length L suspended from the ceiling of a car that rolls down an inclined plane of angle (Fig. P16.73). Dissipative forces between the car and the plane are negligible.arrow_forwardWhich of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forward
- A spherical bob of mass m and radius R is suspended from a fixed point by a rigid rod of negligible mass whose length from the point of support to the center of the bob is L (Fig. P16.75). Find the period of small oscillation. N The frequency of a physical pendulum comprising a nonuniform rod of mass 1.25 kg pivoted at one end is observed to be 0.667 Hz. The center of mass of the rod is 40.0 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point?arrow_forwardA block with mass m = 0.1 kg oscillates with amplitude .A = 0.1 in at the end of a spring with force constant k = 10 N/m on a frictionless, horizontal surface. Rank the periods of the following situations from greatest to smallest. If any periods are equal, show their equality in your tanking, (a) The system is as described above, (b) The system is as described in situation (a) except the amplitude is 0.2 m. (c) The situation is as described in situation (a) except the mass is 0.2 kg. (d) The situation is as described in situation (a) except the spring has force constant 20 N/m. (e) A small resistive force makes the motion underdamped.arrow_forwardFigure 12.4 shows two curves representing particles undergoing simple harmonic motion. The correct description of these two motions is that the simple harmonic motion of particle B is (a) of larger angular frequency and larger amplitude than that of particle A, (b) of larger angular frequency and smaller amplitude than that of particle A, (c) of smaller angular frequency and larger amplitude than that of particle A, or (d) of smaller angular frequency and smaller amplitude than that of particle A. Figure 12.4 (Quick Quiz 12.3) Two xt graphs for particles undergoing simple harmonic motion. The amplitudes and frequencies are different for the two particles.arrow_forward
- When a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forwardA simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forwardThe total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY