Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 10CQ
At sporting events, the crowd sometimes generates a “wave” that propagates around the stadium. Is this wave transverse or longitudinal? What causes the wave to travel through the crowd? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Physics of Everyday Phenomena
Ch. 15 - A wave pulse is transmitted down a Slinky, but the...Ch. 15 - Waves are traveling in an eastward direction on a...Ch. 15 - If the magnet in the buoy described in everyday...Ch. 15 - What does rectification mean and why is it needed...Ch. 15 - A slowly moving engine bumps into a string of...Ch. 15 - A wave can be propagated on a blanket by holding...Ch. 15 - If you increase the frequency with which you are...Ch. 15 - If you increase the speed of a wave on a Slinky by...Ch. 15 - Is it possible to produce a transverse wave on a...Ch. 15 - At sporting events, the crowd sometimes generates...
Ch. 15 - Is it possible to produce a longitudinal wave on a...Ch. 15 - Suppose we double the mass per unit of length of a...Ch. 15 - Prob. 13CQCh. 15 - Prob. 14CQCh. 15 - Suppose we increase the tension in a rope, keeping...Ch. 15 - Is it possible for two waves traveling in the same...Ch. 15 - Prob. 17CQCh. 15 - Prob. 18CQCh. 15 - We can form standing waves on a rope attached to a...Ch. 15 - Prob. 20CQCh. 15 - Prob. 21CQCh. 15 - If we increase the tension of a guitar string,...Ch. 15 - Prob. 23CQCh. 15 - Prob. 24CQCh. 15 - Is it possible for sound to travel through a steel...Ch. 15 - Prob. 26CQCh. 15 - Prob. 27CQCh. 15 - Prob. 28CQCh. 15 - A band playing on a flat-bed truck is approaching...Ch. 15 - When the sound source is moving relative to the...Ch. 15 - Is it possible for sound waves to travel through a...Ch. 15 - Prob. 32CQCh. 15 - Prob. 33CQCh. 15 - What are we measuring when we perform a harmonic...Ch. 15 - How is the musical interval that we call a fifth...Ch. 15 - Prob. 36CQCh. 15 - Prob. 37CQCh. 15 - Two notes close together on the scale, such as do...Ch. 15 - Suppose that water waves coming into a dock have a...Ch. 15 - Suppose that water waves have a wavelength of 3.8...Ch. 15 - A longitudinal wave on a Slinky has a frequency of...Ch. 15 - Prob. 4ECh. 15 - A wave on a string has a speed of 11.5 m/s and a...Ch. 15 - Prob. 6ECh. 15 - A string with a length of 0.75 m is fixed at both...Ch. 15 - Suppose that the string in exercise 7 is plucked...Ch. 15 - Prob. 9ECh. 15 - What is the frequency of a sound wave with a...Ch. 15 - An organ pipe closed at one end and open at the...Ch. 15 - Suppose we start a major scale on concert A, which...Ch. 15 - If fa on a given scale has a frequency of 348 Hz,...Ch. 15 - Prob. 14ECh. 15 - If do has a frequency of 265 Hz and re a frequency...Ch. 15 - Prob. 16ECh. 15 - Prob. 17ECh. 15 - Prob. 1SPCh. 15 - A guitar string has an overall length of 1.25 m...Ch. 15 - A pipe that is open at both ends will form...Ch. 15 - For standard tuning, concert A is defined to have...Ch. 15 - Using the procedure outlined in section 15.5 where...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The wave is a particular type of pulse that can propagate through a large crowd gathered at a sports arena (Fig. P13.54). The elements of the medium are the spectators, with zero position corresponding to their being seated and maximum position corresponding to their standing and raising their arms. When a large fraction of the spectators participates in the wave motion, a somewhat stable pulse shape can develop. The wave speed depends on peoples reaction time, which is typically on the order of 0.1 s. Estimate the order of magnitude, in minutes, of the time interval required for such a pulse to make one circuit around a large sports stadium. State the quantities you measure or estimate and their values.arrow_forwardA transverse wave on a string is described by the wave function y=0.120sin(8x+4t) where x and y are in meters and t is in seconds. Determine (a) the transverse speed and (b) the transverse acceleration at t = 0.200 s for an element of the string located at x = 1.60 m. What are (c) the wavelength, (d) the period, and (e) the speed of propagation of this wave?arrow_forwardConsider the following wave function in SI units: P(r,t)=(25.0r)sin(1.36r2030t) Explain how this wave function can apply to a wave radiating from a small source, with r being the radial distance from the center of the source to any point outside the source. Give the most detailed description of the wave that you can. Include answers to such questions as the following and give representative values for any quantities that can be evaluated. (a) Does the wave move more toward the right or the left? (b) As it moves away from the source, what happens to its amplitude? (c) Its speed? (d) Its frequency? (e) Its wavelength? (f) Its power? (g) Its intensity?arrow_forward
- By what factor would you have to multiply the tension in a stretched string so as to double the wave speed? Assume the string does not stretch. (a) a factor of 8 (b) a factor of 4 (c) a factor of 2 (d) a factor of 0.5 (e) You could not change the speed by a predictable factor by changing the tension.arrow_forwardReview. A block of mass M = 0.450 kg is attached to one end of a cord of mass m = 0.003 20 kg: the other end of the cord is attached to a fixed point. the block rotates with constant angular speed = 10.0 rad/s in a circle on a frictionless, horizontal table as shown in Figure p16.55. What time interval is required for a transverse wave to travel along the string from the center of the circle to the block?arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forward
- When all the strings on a guitar (Fig. OQ16.5) are stretched to the same tension, will the speed of a wave along the most massive bass string be (a) faster, (b) slower, or (c) the same as the speed of a wave on the lighter strings? Alternatively, (d) is the speed on the bass string not necessarily any of these answers?arrow_forwardA standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t), where x is in centimeters, t is in seconds, and the resulting amplitude is in millimeters. a. What is the length of the string if this standing wave represents the first harmonic vibration of the string? b. What is the speed of the wave on this string?arrow_forwardThe displacement of the air molecules in sound wave is modeled with the wave function s(x,t)=5.00nmcos(91.54m1x3.14104s1t) . (a) What is the wave speed of the sound wave? (b) What is the maximum speed of the air molecules as they oscillate in simple harmonic motion? (c) What is the magnitude of the maximum acceleration of the air molecules as they oscillate in simple harmonic motion?arrow_forward
- The tensile stress in a thick copper bar is 99.5% of its elastic breaking point of 13.0 1010 N/m2. If 500-Hz sound wave is transmitted through the material, (a) what displacement amplitude will cause the bar to break? (b) What is the maximum speed of the elements of copper at this moment? (c) What is the sound intensity in the bar?arrow_forwardGive one example of a transverse wave and another of a longitudinal wave, being careful to note the relative directions of the disturbance and wave propagation in each.arrow_forward(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waxes change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License