(a)
The mass per unit length of the rope.
(a)
Answer to Problem 1SP
The mass per unit length of the rope is
Explanation of Solution
Given Info: The length of the rope is
Write the formula to calculate the mass per unit length of the rope.
Here,
m is the mass of the rope
L is the length of the rope
Substitute
Conclusion:
Therefore, the mass per unit length of the rope is
(b)
The speed of the wave on the rope.
(b)
Answer to Problem 1SP
The speed of the wave on the rope is
Explanation of Solution
Given Info: The tension on the rope is
Write the formula to calculate the speed of the wave on the rope
Here,
F is the tension on the rope
v is the speed of the wave
Substitute
Conclusion:
Therefore, the speed of the wave on the rope is
(c)
The wavelength for the wave on the rope.
(c)
Answer to Problem 1SP
The wavelength for the wave on the rope is
Explanation of Solution
Given Info: The speed of the wave is
Write the expression for the speed of the wave.
Here,
v is the speed of the wave
f is the frequency of the wave
Substitute
Conclusion:
Therefore, the longest possible wavelength is
(d)
The number of cycles of the waves.
(d)
Answer to Problem 1SP
The number of cycles of wave on the rope is
Explanation of Solution
Given Info: The length of the rope is
Write the expression to calculate the number of cycles on the rope.
Here,
n is the number of cycles on the rope
L is the length of the rope
Substitute
Conclusion:
Therefore, the number of cycles of wave on the rope is
(e)
The time required to travel the wave from one end to the other end.
(e)
Answer to Problem 1SP
The time required is
Explanation of Solution
Given Info: The length of the rope is
Write the expression to calculate the time required for the wave to travel to other end.
Here,
t is the time required for the wave for the travelling
Substitute
Conclusion:
Therefore, The time required is
Want to see more full solutions like this?
Chapter 15 Solutions
Physics of Everyday Phenomena
- A sound wave is modeled with the wave function P=1.20Pasin(kx6.28104s1t) and the sound wave travels in air at a speed of v=343.00 m/s. (a) What is the wave number of the sound wave? (b) What is the value for P(3.00 m, 20.00 s)?arrow_forwardA physicist a1 a fireworks display times the lag between seeing an explosion and hearing its sound, and finds it to be 0.400 s. (a) How far away is the explosion if air temperature is 24.0°C and if you neglect the time taken for light to reach the physicist? (b) Calculate the distance to the explosion taking the speed of light into account. Note that this distance is negligibly greater.arrow_forwardTwo children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 3 m long, its mass is 0.5 kg, and the force excited on it by the children is 40 N. (a) What is the linear mass density of the rope? (b) What is the speed of the waves on the rope?arrow_forward
- An airplane moves at Mach 1.2 and produces a shock wave. (a) What is the speed of the plane in meters per second? (b) What is the angle that the shock wave moves?arrow_forwardAn ambulance moving at 42 m/s sounds its siren whose frequency is 450 Hz. A car is moving in the same direction as the ambulance at 25 m/s. What frequency does a person in the car hear (a) as the ambulance approaches the car? (b) Alter the ambulance passes the car?arrow_forwardA dolphin (Fig. P17.7) in seawater at a temperature of 25C emits a sound wave directed toward the ocean floor 150 m below. How much time passes before it hears an echo?arrow_forward
- A driver travels northbound on a highway at a speed of 25.0 m/s. A police car, traveling southbound at a speed of 40.0 m/s, approaches with its siren producing sound at a frequency of 2 500 Hz. (a) What frequency does the driver observe as the police car approaches? (b) What frequency does the driver detect after the police car passes him? (c) Repeat parts (a) and (b) for the case when the police car is behind the driver and travels northbound.arrow_forwardA cowboy stands on horizontal ground between two parallel, vertical clifTs. He is not midway between the cliffs. Me fires a shot and hears its echoes. The second echo arrives 1.92 s after the first and 1.47 s before the third. Consider only the sound traveling parallel to the ground and reflecting from the cliffs, (a) What is the distance between the cliffs? (b) What If? If he can hear a fourth echo, how long after the third echo does it arrive?arrow_forwardThe speed of a transverse wave on a string is v=60.00 m/s and the tension in the string is FT=100.00 N . What must the tension be to increase the speed of the wave to v=120.00 m/s?arrow_forward
- A sound wave traveling in 20°C air has a pressure amplitude of 0.5 Pa. What is the intensity of the wave?arrow_forwardA yellow submarine traveling horizontally at 11.0 m/s uses sonar with a frequency of 5.27 103 Hz. A red submarine is in front of the yellow submarine and moving 3.00 m/s relative to the water in the same direction. A crewman in the red submarine observes sound waves (pings) from the yellow submarine. Take the speed of sound in seawater as 1 533 m/s. (a) Write Equation 14.12. (b) Which submarine is the source of the sound? (c) Which submarine carries the observer? (d) Does the motion of the observers submarine increase or decrease the time between the pressure maxima of the incoming sound waves? How does that affect the observed period? The observed frequency? (e) Should the sign of v0 be positive or negative? (f) Does the motion of the source submarine increase or decrease the time observed between the pressure maxima? How does this motion affect the observed period? The observed frequency? (g) What sign should be chosen for vs? (h) Substitute the appropriate numbers and obtain the frequency observed by the crewman on the red submarine.arrow_forwardDuring a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning