Concept explainers
A guitar string has an overall length of 1.25 m and a total mass of 1.0 g (0.001 kg) before it is strung on the guitar. Once on the guitar, however, there is a distance of 69 cm between its fixed end points. It is tightened to a tension of 74 N.
a. What is the mass per unit of length of this string?
b. What is the wave speed for waves on the tightened string?
c. What is the wavelength of the traveling waves that interfere to form the fundamental standing wave (nodes just at either end) for this string?
d. What is the frequency of the fundamental wave?
e. What are the wavelength and frequency of the next harmonic (with a node in the middle of the string)?
(a)
The mass per unit length of the string.
Answer to Problem 2SP
The mass per unit length of the string is
Explanation of Solution
Given Info: The length of the string is
Write the expression to calculate the mass per unit length of the string.
Here,
L is the length of the string
m is the mass of the string
Substitute
Conclusion:
Therefore, the mass per unit length of the string is
(b)
The wave speed.
Answer to Problem 2SP
The wave speed is
Explanation of Solution
Given Info: The mass per unit length of the string is
Write the formula to calculate the wave speed.
Here,
v is the wave speed
F is the tension on the string
Substitute
Conclusion:
Therefore, the wave speed is
(c)
The wavelength of the travelling wave.
Answer to Problem 2SP
The wavelength is
Explanation of Solution
Given Info: The distance between two end is
Write the expression to calculate the wavelength.
Here,
l is the distance between two ends
Substitute
Conclusion:
Therefore, the wavelength is
(d)
The frequency of the standing wave.
Answer to Problem 2SP
The frequency of the standing wave is
Explanation of Solution
Given Info: The wavelength of the standing wave is The longest possible wavelength is
Write the expression to calculate the speed of the sound wave.
Here,
f is the frequency of the sound wave
Substitute
Conclusion:
Therefore, the frequency of the standing wave is
(e)
The frequency and wavelength of the next harmonic wave.
Answer to Problem 2SP
The frequency of the second harmonic wave is
Explanation of Solution
Given Info: The distance between two end is
Write the formula to calculate the wavelength of the second harmonic.
Here,
Substitute
Write the expression to calculate the speed of the sound wave.
Here,
Substitute
Conclusion:
Therefore, the frequency of the second harmonic wave is
Want to see more full solutions like this?
Chapter 15 Solutions
Physics of Everyday Phenomena
- A sound wave is modeled with the wave function P=1.20Pasin(kx6.28104s1t) and the sound wave travels in air at a speed of v=343.00 m/s. (a) What is the wave number of the sound wave? (b) What is the value for P(3.00 m, 20.00 s)?arrow_forwardTwo children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 3 m long, its mass is 0.5 kg, and the force excited on it by the children is 40 N. (a) What is the linear mass density of the rope? (b) What is the speed of the waves on the rope?arrow_forwardA string on the violin has a length of 23.00 cm and a mass of 0.900 grams. The tension in the string 850.00 N. The temperature in the room is TC=24.00C . The string is plucked and oscillates in the n=9 mode. (a) What is the speed of the wave on the string? (b) What is the wavelength of the sounding wave produced? (c) What is the frequency of the oscillating string? (d) What is the frequency of the sound produced? (e) What is the wavelength of the sound produced?arrow_forward
- A wave traveling on a Slinky® mat is stretched to 4 m takes 2.4 s to travel the length at me Slinky and back again. (a) What is the speed of the wave? (b) Using the same Slinky stretched to the same length, a standing wave is created which consists of three antinodes and four nodes. At what frequency must the Slinky be oscillating?arrow_forwardAn airplane moves at Mach 1.2 and produces a shock wave. (a) What is the speed of the plane in meters per second? (b) What is the angle that the shock wave moves?arrow_forwardA string on the violin has a length of 24.00 cm and a mass of 0.860 g. The fundamental frequency of the string is 1.00 kHz. (a) What is the speed of the wave on the string? (b) What is the tension in the string?arrow_forward
- A dolphin (Fig. P17.7) in seawater at a temperature of 25C emits a sound wave directed toward the ocean floor 150 m below. How much time passes before it hears an echo?arrow_forwardA tunnel under a river is 2.00 km long. (a) At what frequencies can the air in the tunnel resonate? (b) Explain whether it would be good to make a rule against blowing your car horn when you are in the tunnel.arrow_forwardA dog swims from one end of a pool to the opposite end. Is the dogs motion described as a wave? Explain.arrow_forward
- A copper wire has a density of =8920 kg/m3, a radius of 1.20 mm, and a length L. The wire is held under a tension of 10.00 N. Transverse waves are sent down the wire. (a) What is the linear mass density of the wire? (b) What is the speed of the waves through the wire?arrow_forwardA 4.0-m-long pipe, open at one end and closed at one end, is in a room where the temperature is T=22C . A speaker capable of producing variable frequencies is placed at the open end and is used to cause the tube to resonate. (a) What is the wavelength and the frequency of the fundamental frequency? (b) What is the frequency and wavelength of the first overtone?arrow_forward(a) What are the loudnesses in phons of sounds having frequencies of 200, 1000, 5000, and 10,000 Hz. if they are all at the same 60.0dB sound intensity level? (b) If may are all at 110 dB? (c) If they are all at 20.0 dB?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning