Brock Biology of Microorganisms (15th Edition)
15th Edition
ISBN: 9780134261928
Author: Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley, David A. Stahl
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.7, Problem 1MQ
- In a coupled reaction, how can you tell the electron donor half reaction from the electron acceptor half reaction?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does the rate of the forward reaction compare to the rate of the reverse reaction for an endergonic reaction? For an exergonic reaction? Explain.
Which of the following is TRUE under the following conditions: the enzyme
concentration is 2.5 nM, substrate concentration is 75 nM, the KM = 150 nM, and
the Vmax = 20 nmol/min
a) The rate of the reaction is 20 nmol/min!
b) The rate of the reaction is between 10 nmol/min and 20 nmol/min.
c) The rate of the reaction is 10 nmol/min.
d) The rate of the reaction is below 10 nmol/min.
e) The rate cannot be determined from the above information.
How many ATP are generated in link reaction ?
Chapter 14 Solutions
Brock Biology of Microorganisms (15th Edition)
Ch. 14.1 - What is the fundamental difference between an...Ch. 14.1 - What is the purpose of chlorophyll and...Ch. 14.1 - Why can phototrophic green bacteria grow at light...Ch. 14.1 - What are the functions of light-harvesting and...Ch. 14.2 - In which phototrophs are carotenoids found?...Ch. 14.2 - How does the structure of a phycobilin compare...Ch. 14.2 - Phycocyanin is blue-green. What color of light...Ch. 14.2 - What accessory pigments are present in...Ch. 14.3 - What parallels exist in the processes of...Ch. 14.3 - What is reverse electron flow and why is it...
Ch. 14.3 - What is the difference between cyclic and...Ch. 14.3 - What is reverse electron transport and why is it...Ch. 14.4 - Differentiate between cyclic and noncyclic...Ch. 14.4 - What is the key role of light energy in the...Ch. 14.4 - What evidence is there that anoxygenic and...Ch. 14.4 - Prob. 1CRCh. 14.5 - Prob. 1MQCh. 14.5 - How much NADPH and ATP is required to make one...Ch. 14.5 - Contrast autotrophy in the following phototrophs:...Ch. 14.5 - QWhat is a carboxysome, and what is its role in...Ch. 14.6 - Prob. 1MQCh. 14.6 - What is FeMo-co and what does it do?Ch. 14.6 - How is acetylene useful in studies of nitrogen...Ch. 14.6 - How might the ability to fix nitrogen help a...Ch. 14.7 - In a coupled reaction, how can you tell the...Ch. 14.7 - How does aerobic respiration differ from anaerobic...Ch. 14.7 - Describe the major differences between...Ch. 14.7 - Prob. 1CRCh. 14.8 - What enzyme is required for hydrogen bacteria to...Ch. 14.8 - Why is reverse electron flow unnecessary in H2...Ch. 14.8 - QWhich inorganic electron donors are used by the...Ch. 14.9 - Prob. 1MQCh. 14.9 - In terms of intermediates, how does the Sox system...Ch. 14.9 - Prob. 1CRCh. 14.10 - Prob. 1MQCh. 14.10 - What is the function of rusticyanin and where is...Ch. 14.10 - How can Fe2+ be oxidized under anoxic conditions?Ch. 14.10 - Prob. 1CRCh. 14.11 - Prob. 1MQCh. 14.11 - Prob. 2MQCh. 14.11 - Prob. 1CRCh. 14.12 - What are the electron donor and acceptor in the...Ch. 14.12 - What does electron transport in anammox bacteria...Ch. 14.12 - Compare CO2 fixation in anammox bacteria and...Ch. 14.12 - Prob. 1CRCh. 14.13 - For Escherichia coli, why is more energy released...Ch. 14.13 - How do the products of NO3 reduction differ...Ch. 14.13 - Where is the dissimilative nitrate reductase found...Ch. 14.13 - Prob. 1CRCh. 14.14 - How is SO42 converted to SO32 during dissimilative...Ch. 14.14 - Contrast the growth of Desulfovibrio on H2 versus...Ch. 14.14 - Give an example of sulfur disproportionation.Ch. 14.14 - Prob. 1CRCh. 14.15 - Prob. 1MQCh. 14.15 - What is reductive dechlorination and why is it...Ch. 14.15 - How does anaerobic glucose catabolism differ in...Ch. 14.15 - Compare and contrast ferric iron reduction with...Ch. 14.16 - What is the purpose of CO dehydrogenase?Ch. 14.16 - If acetogens conserve energy using the Rnf...Ch. 14.16 - What is electron bifurcation and what role does it...Ch. 14.16 - Compare and contrast acetogens with methanogens in...Ch. 14.17 - Which coenzymes function as C1 carriers in...Ch. 14.17 - In methanogens growing on H2 + CO2, how is carbon...Ch. 14.17 - How is ATP made in methanogenesis when the...Ch. 14.17 - What are the major differences in the conservation...Ch. 14.18 - When using CH4 as electron donor, why is...Ch. 14.18 - In which two ways does the ribulose monophosphate...Ch. 14.18 - What is unique about methanotrophy in...Ch. 14.18 - Prob. 1CRCh. 14.19 - Why is H2 produced during many types of...Ch. 14.19 - Why is acetate formation in fermentation...Ch. 14.19 - Define the term substrate-level phosphorylation:...Ch. 14.20 - How can homo- and heterofermentative metabolism be...Ch. 14.20 - Butanediol production leads to greater ethanol...Ch. 14.20 - QWhat are the major fermentation products of...Ch. 14.21 - Compare the mechanisms for energy conservation in...Ch. 14.21 - What type of substrates are fermented by...Ch. 14.21 - What are the substrates for the Clostridium...Ch. 14.21 - Prob. 1CRCh. 14.22 - Why does Propionigenium modestum require sodium...Ch. 14.22 - Of what benefit is the organism Oxalobacter to...Ch. 14.22 - Prob. 3MQCh. 14.22 - Give an example of a fermentation that does not...Ch. 14.23 - Give an example of interspecies H2 transfer. Why...Ch. 14.23 - Why can a pure culture of Syntrophomonas grow on...Ch. 14.23 - Why is syntrophy also called interspecies H2...Ch. 14.24 - How do monooxygenases differ in function from...Ch. 14.24 - What is the final product of catabolism of a...Ch. 14.24 - Prob. 3MQCh. 14.24 - How do monooxygenases differ from dioxygenases in...Ch. 14.25 - What is the benzoyl-CoA pathway, and how might it...Ch. 14.25 - How is hexane oxygenated during anoxic catabolism?Ch. 14.25 - Prob. 1CRCh. 14 - The growth rate of the phototrophic purple...Ch. 14 - Prob. 2AQCh. 14 - A fatty acid such as butyrate cannot be fermented...Ch. 14 - When methane is made from CO2 (plus H2) or from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- The figure below represents a reaction in the presence and absence of an enzyme catalyst. What can you conclude about this reaction? energy activation energy activation energy 1 uncatalysed reaction catalysed reaction A) It is endergonic in the absence of the enzyme. B) It will proceed more quickly in the presence of the enzyme. C) Once the reaction has reached equilibrium, there will be more product in the enzyme-catalyzed reaction. D) It has a negative AG. OE) Both B and D are truearrow_forwardIn the reaction below, the products have a higher free energy (G) than the reactants. What can you conclude about this reaction? AB + C A) It is endergonic with a negative delta G. 4 B) It is exergonic with a negative delta G. AC + B C) It is endergonic with a positive delta G. E) A and D D) It will proceed more quickly in the presence of a catalyst. F) B and D G) C and Darrow_forwardWhy does the activation energy of a reaction not appear in the final Δ G of the reaction?arrow_forward
- Consider a reaction in which reactants X and Y combine to form the product Z. The diagram below compares the reaction coordinates for the catalyzed and uncatalyzed pathways of this reaction. B. X+Y Reaction Coordinate What does letter B represent? O Letter B represents the activation energy of the uncatalyzed reaction pathway. Letter B represents the energy difference between the reactants and products for the uncatalyzed pathway. O Letter B represents the activation energy of the catalyzed reaction pathway. Letter B represents the energy difference between the reactants and products for the catalyzed pathway. Energyarrow_forwardUnder standard conditions, will the following reaction proceed spontaneously as written?arrow_forwardWhy do we refer to the conversion of six molecules of carbon dioxide (six carbon atoms) to one molecule of glucose (also six carbon atoms) as a net reaction?arrow_forward
- Given the following enzyme catalyzed reaction, identify the class and subclass of the enzyme involved: NADH NAD* + H* C-O C-OT C=0 H-C-OH CH CH Class: Subclass:arrow_forwarda) Draw one example of an interaction the enzyme could provide that would stabilize this transition state. please draw it by hand so i can understand it better. b) What is the consequence of this stabilization for the overall reaction? Briefly explain your reasoning.arrow_forwardUnder standard conditions, will the following reaction proceed spontaneously as written? Fumarate + NADH + H+⇌ succinate + NAD+arrow_forward
- How can phosphorylation drive an endergonic reaction?arrow_forwardYou begin to study enzyme Z, which catalyzes a simple reversible reaction that interconverts compound S and compound P. You observe that the ∆G´° for the S to P conversion to be –6 kJ/mol, and that compound S has ∆G´° for binding to enzyme Z of –15 kJ/mol, while compound P has a ∆G´° for binding to enzyme Z of –13 kJ/mol. Please explain the effect of enzyme Z on conversion of S to P. (Your answer should include a graph qualitatively showing energy versus reaction progress; however, you still need to explain youranswer in words!) not sure how to make the correct graph.arrow_forwardConsider the reaction: H O C—C—C—SCOA H₂C(CH₂)C= CO H H₂C-(CH₂) What kind of reaction is being performed here? b. What enzyme performs this reaction? OH H O O=C -C—C—C—SCOA H H c. What cofactors, if any, are required for this reaction?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Biochemical Tests-Part 1; Author: Southern Stacker;https://www.youtube.com/watch?v=a-i9vANfQWQ;License: Standard Youtube License