
Brock Biology of Microorganisms (15th Edition)
15th Edition
ISBN: 9780134261928
Author: Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley, David A. Stahl
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.11, Problem 2MQ
Summary Introduction
In the mechanism of nitrification, the reduced inorganic nitrogen compounds such as ammonia (NH3) and nitrite (NO2-) are aerobically oxidized by chemolithotrophic nitrifying bacteria. The nitrification process contains two different reactions, the first reaction catalyzes oxidation of NH3 to NO2- and the second reaction catalyzes oxidation of NO2- to NO3- (nitrate). Nitrifying microbes carry out this nitrification process.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Select all of the following that the ablation (knockout) or ectopoic expression (gain of function) of Hox can contribute to.
Another set of wings in the fruit fly, duplication of fingernails, ectopic ears in mice, excess feathers in duck/quail chimeras, and homeosis of segment 2 to jaw in Hox2a mutants
Select all of the following that changes in the MC1R gene can lead to:
Changes in spots/stripes in lizards, changes in coat coloration in mice, ectopic ear formation in Siberian hamsters, and red hair in humans
Pleiotropic genes are genes that (blank)
Cause a swapping of organs/structures, are the result of duplicated sets of chromosomes, never produce protein products, and have more than one purpose/function
Chapter 14 Solutions
Brock Biology of Microorganisms (15th Edition)
Ch. 14.1 - What is the fundamental difference between an...Ch. 14.1 - What is the purpose of chlorophyll and...Ch. 14.1 - Why can phototrophic green bacteria grow at light...Ch. 14.1 - What are the functions of light-harvesting and...Ch. 14.2 - In which phototrophs are carotenoids found?...Ch. 14.2 - How does the structure of a phycobilin compare...Ch. 14.2 - Phycocyanin is blue-green. What color of light...Ch. 14.2 - What accessory pigments are present in...Ch. 14.3 - What parallels exist in the processes of...Ch. 14.3 - What is reverse electron flow and why is it...
Ch. 14.3 - What is the difference between cyclic and...Ch. 14.3 - What is reverse electron transport and why is it...Ch. 14.4 - Differentiate between cyclic and noncyclic...Ch. 14.4 - What is the key role of light energy in the...Ch. 14.4 - What evidence is there that anoxygenic and...Ch. 14.4 - Prob. 1CRCh. 14.5 - Prob. 1MQCh. 14.5 - How much NADPH and ATP is required to make one...Ch. 14.5 - Contrast autotrophy in the following phototrophs:...Ch. 14.5 - QWhat is a carboxysome, and what is its role in...Ch. 14.6 - Prob. 1MQCh. 14.6 - What is FeMo-co and what does it do?Ch. 14.6 - How is acetylene useful in studies of nitrogen...Ch. 14.6 - How might the ability to fix nitrogen help a...Ch. 14.7 - In a coupled reaction, how can you tell the...Ch. 14.7 - How does aerobic respiration differ from anaerobic...Ch. 14.7 - Describe the major differences between...Ch. 14.7 - Prob. 1CRCh. 14.8 - What enzyme is required for hydrogen bacteria to...Ch. 14.8 - Why is reverse electron flow unnecessary in H2...Ch. 14.8 - QWhich inorganic electron donors are used by the...Ch. 14.9 - Prob. 1MQCh. 14.9 - In terms of intermediates, how does the Sox system...Ch. 14.9 - Prob. 1CRCh. 14.10 - Prob. 1MQCh. 14.10 - What is the function of rusticyanin and where is...Ch. 14.10 - How can Fe2+ be oxidized under anoxic conditions?Ch. 14.10 - Prob. 1CRCh. 14.11 - Prob. 1MQCh. 14.11 - Prob. 2MQCh. 14.11 - Prob. 1CRCh. 14.12 - What are the electron donor and acceptor in the...Ch. 14.12 - What does electron transport in anammox bacteria...Ch. 14.12 - Compare CO2 fixation in anammox bacteria and...Ch. 14.12 - Prob. 1CRCh. 14.13 - For Escherichia coli, why is more energy released...Ch. 14.13 - How do the products of NO3 reduction differ...Ch. 14.13 - Where is the dissimilative nitrate reductase found...Ch. 14.13 - Prob. 1CRCh. 14.14 - How is SO42 converted to SO32 during dissimilative...Ch. 14.14 - Contrast the growth of Desulfovibrio on H2 versus...Ch. 14.14 - Give an example of sulfur disproportionation.Ch. 14.14 - Prob. 1CRCh. 14.15 - Prob. 1MQCh. 14.15 - What is reductive dechlorination and why is it...Ch. 14.15 - How does anaerobic glucose catabolism differ in...Ch. 14.15 - Compare and contrast ferric iron reduction with...Ch. 14.16 - What is the purpose of CO dehydrogenase?Ch. 14.16 - If acetogens conserve energy using the Rnf...Ch. 14.16 - What is electron bifurcation and what role does it...Ch. 14.16 - Compare and contrast acetogens with methanogens in...Ch. 14.17 - Which coenzymes function as C1 carriers in...Ch. 14.17 - In methanogens growing on H2 + CO2, how is carbon...Ch. 14.17 - How is ATP made in methanogenesis when the...Ch. 14.17 - What are the major differences in the conservation...Ch. 14.18 - When using CH4 as electron donor, why is...Ch. 14.18 - In which two ways does the ribulose monophosphate...Ch. 14.18 - What is unique about methanotrophy in...Ch. 14.18 - Prob. 1CRCh. 14.19 - Why is H2 produced during many types of...Ch. 14.19 - Why is acetate formation in fermentation...Ch. 14.19 - Define the term substrate-level phosphorylation:...Ch. 14.20 - How can homo- and heterofermentative metabolism be...Ch. 14.20 - Butanediol production leads to greater ethanol...Ch. 14.20 - QWhat are the major fermentation products of...Ch. 14.21 - Compare the mechanisms for energy conservation in...Ch. 14.21 - What type of substrates are fermented by...Ch. 14.21 - What are the substrates for the Clostridium...Ch. 14.21 - Prob. 1CRCh. 14.22 - Why does Propionigenium modestum require sodium...Ch. 14.22 - Of what benefit is the organism Oxalobacter to...Ch. 14.22 - Prob. 3MQCh. 14.22 - Give an example of a fermentation that does not...Ch. 14.23 - Give an example of interspecies H2 transfer. Why...Ch. 14.23 - Why can a pure culture of Syntrophomonas grow on...Ch. 14.23 - Why is syntrophy also called interspecies H2...Ch. 14.24 - How do monooxygenases differ in function from...Ch. 14.24 - What is the final product of catabolism of a...Ch. 14.24 - Prob. 3MQCh. 14.24 - How do monooxygenases differ from dioxygenases in...Ch. 14.25 - What is the benzoyl-CoA pathway, and how might it...Ch. 14.25 - How is hexane oxygenated during anoxic catabolism?Ch. 14.25 - Prob. 1CRCh. 14 - The growth rate of the phototrophic purple...Ch. 14 - Prob. 2AQCh. 14 - A fatty acid such as butyrate cannot be fermented...Ch. 14 - When methane is made from CO2 (plus H2) or from...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- A loss of function mutation in Pitx1 enhancers can cause (blank) Removal of Pitx1 exons and growth of ectopic hindlimbs, growth of extra ectopic forelimbs, loss of forelimb specification and development, and loss of hindlimb specification and developmentarrow_forwardHox1a most likely contributes to (blank) patterning in the developing embryo? Ventral, posterior, limb or anteriorarrow_forwardSelect all of the following that can help establish Hox gene expression boundaries (things that affect Hox and not things that Hox affects). Retinoic acid, anterior/posterior axis, fibroblast growth factors, vagal neural crest, and enhancersarrow_forward
- Ectopic expression of Hox often results in (blank) phenotypes. (Blank) transformations are characterized by the replacement of one body part/structure with another. Hoxeotic, homealoneotic, joexotic, or homeoticarrow_forwardWhat's the difference when drawing omega-6 and omega-3?arrow_forward. Consider a base substitution mutation that occurred in a DNA sequence that resulted in a change in the encoded protein from the amino acid glutamic acid to aspartic acid. Normally the glutamic acid amino acid is located on the outside of the soluble protein but not near an active site. O-H¨ A. What type of mutation occurred? O-H B. What 2 types of chemical bonds are found in the R-groups of each amino acid? The R groups are shaded. CH2 CH2 CH2 H2N-C-COOH H2N-C-COOH 1 H Glutamic acid H Aspartic acid C. What 2 types of bonds could each R-group of each of these amino acids form with other molecules? D. Consider the chemical properties of the two amino acids and the location of the amino acid in the protein. Explain what effect this mutation will have on this protein's function and why.arrow_forward
- engineered constructs that consist of hollow fibers are acting as synthetic capillaries, around which cells have been loaded. The cellular space around a single fiber can be modeled as if it were a Krogh tissue cylinder. Each fiber has an outside “capillary” radius of 100 µm and the “tissue” radius can be taken as 200 µm. The following values apply to the device:R0 = 20 µM/secaO2 = 1.35 µM/mmHgDO2,T = 1.67 x 10-5 cm2/secPO2,m = 4 x 10-3 cm/secInstead of blood inside the fibers, the oxygen transport and tissue consumption are being investigated by usingan aqueous solution saturated with pure oxygen. As a result, there is no mass transfer resistance in the synthetic“capillary”, only that due to the membrane itself. Rather than accounting for pO2 variations along the length ofthe fiber, use an average value in the “capillary” of 130 mmHg.Is the tissue fully oxygenated?arrow_forwardMolecular Biology Please help with question. thank you You are studying the expression of the lac operon. You have isolated mutants as described below. In the presence of glucose, explain/describe what would happen, for each mutant, to the expression of the lac operon when you add lactose AND what would happen when the bacteria has used up all of the lactose (if the mutant is able to use lactose).5. Mutations in the lac operator that strengthen the binding of the lac repressor 200 fold 6. Mutations in the promoter that prevent binding of RNA polymerase 7. Mutations in CRP/CAP protein that prevent binding of cAMP8. Mutations in sigma factor that prevent binding of sigma to core RNA polymerasearrow_forwardMolecular Biology Please help and there is an attached image. Thank you. A bacteria has a gene whose protein/enzyme product is involved with the synthesis of a lipid necessary for the synthesis of the cell membrane. Expression of this gene requires the binding of a protein (called ACT) to a control sequence (called INC) next to the promoter. A. Is the expression/regulation of this gene an example of induction or repression?Please explain:B. Is this expression/regulation an example of positive or negative control?C. When the lipid is supplied in the media, the expression of the enzyme is turned off.Describe one likely mechanism for how this “turn off” is accomplished.arrow_forward
- Molecular Biology Please help. Thank you. Discuss/define the following:(a) poly A polymerase (b) trans-splicing (c) operonarrow_forwardMolecular Biology Please help with question. Thank you in advance. Discuss, compare and contrast the structure of promoters inprokaryotes and eukaryotes.arrow_forwardMolecular Biology Please help with question. Thank you You are studying the expression of the lac operon. You have isolated mutants as described below. In the absence of glucose, explain/describe what would happen, for each mutant, to the expression of the lac operon when you add lactose AND what would happen when the bacteria has used up all of the lactose (if the mutant is able to use lactose).1. Mutations in the lac repressor gene that would prevent the binding of lactose2. Mutations in the lac repressor gene that would prevent release of lactose once lactose hadbound3. Normally the lac repressor gene is located next to (a few hundred base pairs) and upstreamfrom the lac operon. Mutations in the lac repressor gene that move the lac repressor gene 100,000base pairs downstream.4. Mutations in the lac operator that would prevent binding of lac repressorarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning

Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning

Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning

Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning