EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.7, Problem 109P
A wet cooling tower is to cool 60 kg/s of water from 40 to 33°C. Atmospheric air enters the tower at 1 atm with dry- and wet-bulb temperatures of 22 and 16°C, respectively, and leaves at 30°C with a relative humidity of 95 percent. Using the psychrometric chart, determine (a) the volume flow rate of air into the cooling tower and (b) the mass flow rate of the required makeup water.
FIGURE P14–109
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No use chatgpt
Problem 6 (Optional, extra 6 points)
150 mm
150 mm
120 mm
80 mm
60 mm
PROBLEM 18.103
A 2.5 kg homogeneous disk of radius 80 mm rotates with an
angular velocity ₁ with respect to arm ABC, which is welded
to a shaft DCE rotating as shown at the constant rate
w212 rad/s. Friction in the bearing at A causes ₁ to
decrease at the rate of 15 rad/s². Determine the dynamic
reactions at D and E at a time when ₁ has decreased to
50 rad/s.
Answer:
5=-22.01 +26.8} N
E=-21.2-5.20Ĵ N
Problem 1.
Two uniform rods AB and CE, each of weight 3 lb and length 2 ft, are welded to each other at their
midpoints. Knowing that this assembly has an angular velocity of constant magnitude c = 12 rad/s,
determine:
(1). the magnitude and direction of the angular momentum HD of the assembly about D.
(2). the dynamic reactions (ignore mg) at the bearings at A and B.
9 in.
3 in.
03
9 in.
3 in.
Answers: HD = 0.162 i +0.184 j slug-ft²/s
HG = 2.21 k
Ay =-1.1 lb; Az = 0; By = 1.1 lb; B₂ = 0.
Chapter 14 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 8PCh. 14.7 - Consider a tank that contains moist air at 3 atm...Ch. 14.7 - Why are the chilled water lines always wrapped...
Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 12PCh. 14.7 - Prob. 13PCh. 14.7 - 14–13 A room contains air at 20°C and 98 kPa at a...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Prob. 17PCh. 14.7 - Prob. 18PCh. 14.7 - Prob. 19PCh. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Prob. 23PCh. 14.7 - Prob. 24PCh. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - Prob. 28PCh. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Prob. 37PCh. 14.7 - Prob. 39PCh. 14.7 - Prob. 41PCh. 14.7 - Prob. 42PCh. 14.7 - Prob. 43PCh. 14.7 - Prob. 44PCh. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - Prob. 47PCh. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 55PCh. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 63PCh. 14.7 - Prob. 64PCh. 14.7 - Prob. 65PCh. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 68PCh. 14.7 - Prob. 69PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Prob. 72PCh. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 74PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Prob. 76PCh. 14.7 - Prob. 77PCh. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - Prob. 81PCh. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 88PCh. 14.7 - Prob. 89PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 93PCh. 14.7 - Prob. 94PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Prob. 98PCh. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - Prob. 108PCh. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Prob. 112PCh. 14.7 - Prob. 113RPCh. 14.7 - Prob. 114RPCh. 14.7 - Prob. 115RPCh. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - 14–121 The relative humidity inside dacha of Prob....Ch. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - 14–126E Air at 15 psia, 60°F, and 70 percent...Ch. 14.7 - Prob. 127RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 129RPCh. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - 14–131 Air enters an air-conditioning system that...Ch. 14.7 - Prob. 132RPCh. 14.7 - Prob. 133RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 138RPCh. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - Prob. 143FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...Ch. 14.7 - Prob. 148FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 5 (Optional, extra 6 points) A 6-lb homogeneous disk of radius 3 in. spins as shown at the constant rate w₁ = 60 rad/s. The disk is supported by the fork-ended rod AB, which is welded to the vertical shaft CBD. The system is at rest when a couple Mo= (0.25ft-lb)j is applied to the shaft for 2 s and then removed. Determine the dynamic reactions at C and D before and after the couple has been removed at 2 s. 4 in. C B Mo 5 in 4 in. Note: 2 rotating around CD induced by Mo is NOT constant before Mo is removed. and ₂ (two unknowns) are related by the equation: ₂ =0+ w₂t 3 in. Partial Answer (after Mo has been removed): C-7.81+7.43k lb D -7.81 7.43 lbarrow_forwardProblem 4. A homogeneous disk with radius and mass m is mounted on an axle OG with length L and a negligible mass. The axle is pivoted at the fixed-point O, and the disk is constrained to roll on a horizontal surface. The disk rotates counterclockwise at the constant rate o₁ about the axle. (mg must be included into your calculation) (a). Calculate the linear velocity of G and indicate it on the figure. (b). Calculate ₂ (constant), which is the angular velocity of the axle OG around the vertical axis. (c). Calculate the linear acceleration ā of G and indicate it on the figure. (d). Determine the force (assumed vertical) exerted by the floor on the disk (e). Determine the reaction at the pivot O. 1 Answers: N = mg +mr(r/L)² @² |j mr w IIG C R L i+ 2L =arrow_forwardProblem 2. The homogeneous disk of weight W = 6 lb rotates at the constant rate co₁ = 16 rad/s with respect to arm ABC, which is welded to a shaft DCE rotating at the constant rate 2 = 8 rad/s. Assume the rod weight is negligible compared to the disk. Determine the dynamic reactions at D and E (ignore mg). Answers: D=-7.12ĵ+4.47k lb r-8 in. 9 in. B D E=-1.822+4.47 lb 9 in. E 12 in. 12 in. xarrow_forward
- Problem 3. Each of the right angle rods has a mass of 120 g and is welded to the shaft, which rotates at a steady speed of 3600 rpm. Ignore the weight of the shaft AB. Find the bearing dynamic reaction at A due to the dynamic imbalance of the shaft. (ignore mgs) 100 N A 100 100 100 100 100 (Dimensions in millimeters) Answer: A=-8521-426j N Barrow_forwardThermodynamics. Need help solving this. Step by step with unitsarrow_forwardQuiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1 = 4mm, for w2 h2=6mm, and for w3 is h3 -6.5 mm. Determine the safety factor (S.f) for the welds. F=29 kN. Use an AWS Electrode type (E100xx). 163 mm 133 mm 140 mm w3 wiarrow_forward
- E W X FO FB F10 F11 F12 Home Q: Consider the square of Figure below.The left face is maintained at 100°C and the top face at 500°C, while the other two faces are exposed to an environment at1 00°C, h=10 W/m². C and k=10 W/m.°C. The block is 1 m square. Compute the temperature of the various nodes as indicated in Figure below and the heat flows at the boundaries. T= 500°C Alt Explain to me in detail how to calculate the matrix in the Casio calculator type (fx-991ES plus) T= 100°C 1 2 4 7 1 m- 3 1 m 5 6 T= 100°C 8 9arrow_forwardWhich of the following sequences converge and which diverge? 1) a₁ = 2+(0.1)" 1-2n 2) a = 1+2n 1/n 3 16) a = n In n 17) an = n 1/n 1-5n4 3) an = n² +8n³ 18) an = √4" n n² -2n+1 n! 20) a = 4) an = 106 5) n-1 a₁ =1+(-1)" n+1 a-(+) (1-4) 6) = 7) a = 2n (-1)"+1 2n-1 21) an = n -A" 1/(Inn) 3n+1 22) a = 3n-1 1/n x" 23) a = , x>0 2n+1 3" x 6" 24) a = 2™" xn! 2n 8) a = n+1 πT 1 9) a„ = sin +- 2 n sin n 10) an = n 25) a = tanh(n) 26) a = 2n-1 27) a = tan(n) 1 -sin n n 11) a = 2" 28) an == " 1 + 2" In(n+1) 12) a = n (In n) 200 29) a = n 13) a = 8/n 14) a 1+ =(1+²)" 15) an 7 n = 10n 30) an-√√n²-n 1"1 31) adx nixarrow_forwardA steel alloy contains 95.7 wt% Fe, 4.0 wt% W, and 0.3 wt% C.arrow_forward
- b. A horizontal cantilever of effective length 3a, carries two concentrated loads W at a distance a from the fixed end and W' at a distance a from the free end. Obtain a formula for the maximum deflection due to this loading using Mohr's method. If the cantilever is 250 mm by 150mm steel I beam, 3 m long having a second moment of area I as 8500 cm4, determine W and W'to give a maximum deflection of 6 mm when the maximum stress due to bending is 90 Mpa. Take Young's modulus of material E as 185 Gpa.arrow_forwardWhich of the following sequences converge and which diverge? 1/n 1) a₁ = 2+(0.1)" 3 16) a = n 1-2n 2) a = In n 1+2n 17) an = 1/n n 1-5n4 3) an = n² +8n³ 18) an = √4" n n! n² -2n+1 20) a = 4) an = 106 5) n-1 a₁ =1+(-1)" n+1 a-(+) (1-4) 6) = 7) a = 2n (-1)"+1 2n-1 21) an = n -A" 1/(Inn) 3n+1 22) a = 3n-1 1/n x" 23) a = , x>0 2n+1 3" x 6" 24) a = 2™" xn! 2n 8) a = n+1 πT 1 9) a„ = sin +- 2 n sin n 10) an = n 25) a = tanh(n) 26) a = 2n-1 27) a = tan(n) 1 -sin n n 11) a = 2" 28) an == " 1 + 2" In(n+1) 12) a = n (In n) 200 29) a = n 13) a = 8/n 14) a 1+ =(1+²)" 15) an 7 n = 10n 30) an-√√n²-n 1"1 31) adx nixarrow_forwardCalculate the angle of incidence of beam radiation on a collector located at (Latitude 17.40S) on June 15 at 1030hrs solar time. The collector is tilted at an angle of 200, with a surface azimuth angle of 150.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY