EBK THERMODYNAMICS: AN ENGINEERING APPR
EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 14.7, Problem 78P

Air enters a 40-cm-diameter cooling section at 1 atm, 32°C, and 70 percent relative humidity at 120 m/min. The air is cooled by passing it over a cooling coil through which cold water flows. The water experiences a temperature rise of 6°C. The air leaves the cooling section saturated at 20°C. Determine (a) the rate of heat transfer, (b) the mass flow rate of the water, and (c) the exit velocity of the airstream.

FIGURE P14–79

Chapter 14.7, Problem 78P, Air enters a 40-cm-diameter cooling section at 1 atm, 32C, and 70 percent relative humidity at 120

(a)

Expert Solution
Check Mark
To determine

The rate of heat transfer.

Answer to Problem 78P

The rate of heat transfer is 478.7kJ/min.

Explanation of Solution

Express the dew point temperature of the incoming air at a temperature of 32°C.

Tdp=Tsat@(ϕ1×Psat@32°C) (I)

Here, the saturation pressure at temperature of 32°C is Psat@32°C and initial specific humidity is ϕ1.

Express initial volume rate of air.

ν˙1=V1A1=V1[πD24] (II)

Here, initial volume and area is V1andA1 respectively, and diameter is D.

Express the mass flow rate of air at inlet.

m˙a1=ν˙1v1 (III)

Here, initial specific volume is v1.

As the process is a steady flow and thus the mass flow rate of dry air remains constant during the entire process.

m˙a1=m˙a2=m˙a

Here, mass flow rate of dry air at exit is m˙a2 and mass flow rate of dry air is m˙a.

Express water mass balance to the combined cooling to obtain the mass flow rate of water.

m˙w,i=m˙w,em˙a1ω1=m˙a2ω2+m˙wm˙w=m˙a1(ω1ω2) (IV)

Here, mass flow rate of water at inlet and exit is m˙w,iandm˙w,e respectively, specific humidity at state 1 and 2 is ω1andω2 respectively and mass flow rate of water is m˙w.

Express the cooling rate when the condensate leaves the system by applying an energy balance on the humidifying section.

E˙inE˙out=ΔE˙systemE˙inE˙out=0E˙in=E˙outm˙ihi=Q˙out+m˙ehe

Q˙out=m˙a1h1(m˙a2h2+m˙whw)=m˙a1(h1h2)m˙whw (V)

Here, rate of heat rejected or cooling rate when the condensate leaves the system is Q˙out, the rate of total energy entering the system is E˙in, the rate of total energy leaving the system is E˙out, the rate of change in the total energy of the system is ΔE˙system, initial and exit mass flow rate is m˙iandm˙e respectively, enthalpy at inlet and exit is hiandhe respectively, enthalpy at state 1 and 2 is h1andh2 respectively, and enthalpy of water is hw.

Conclusion:

Refer Table A-4, “saturated water-temperature table”, and write saturation pressure at temperature of 32°C using an interpolation method.

Write the formula of interpolation method of two variables.

y2=(x2x1)(y3y1)(x3x1)+y1 (VI)

Here, the variables denote by x and y is temperature and saturation pressure respectively.

Show the saturation pressure corresponding to temperature as in Table (1).

Temperature

T(°C)

Saturation pressure

Psat(kPa)

30 (x1)4.2469 (y1)
32 (x2)(y2=?)
35 (x3)5.6291 (y3)

Substitute 30°C,32°Cand35°C for x1,x2,andx3 respectively, 4.2469kPa for y1 and 5.6291kPa for y3 in Equation (VI).

y2=(32°C30°C)(5.6291kPa4.2469kPa)(35°C30°C)+4.2469kPa=4.76kPa=Psat@32°C

Thus, the saturation pressure at temperature of 32°C is,

Psat@32°C=4.76kPa

Substitute 0.7 for ϕ1 and 4.76kPa for Psat@32°C in Equation (I).

Tdp=Tsat@(0.7×4.76kPa)=Tsat@3.33kPa (VII)

Here, saturation temperature at pressure of 3.33kPa is Tsat@3.33kPa.

Refer Table A-5 , “saturated water-pressure table”, and write saturation temperature at pressure of 3.33kPa using an interpolation method.

Show the saturation temperature corresponding to pressure as in Table (2).

Pressure

P(kPa)

Saturation temperature

Tsat(°C)

3 (x1)24.08 (y1)
3.33 (x2)(y2=?)
4 (x3)28.96 (y3)

Use excels and tabulates the values from Table (2) in Equation (VI) to get,

Tsat@3.33kPa=25.8°C

Substitute 25.8°C for Tsat@3.33kPa in Equation (VII).

Tdp=25.8°C

Refer Figure A-31, “psychometric chart at 1 atm total pressure”, and write the properties corresponding to dry bulb temperature of 32°C, dew point temperature of 25.8°C and relative humidity of 70%.

h1=86.35kJ/kgdryairω1=0.02114kgH2O/kgdryairν1=0.8939m3/kgdryair

Refer Figure A-31, “psychometric chart at 1 atm total pressure”, and write the properties corresponding to dry bulb temperature of 20°C and dew point temperature of 25.8°C.

h2=57.43kJ/kgdryairω2=0.0147kgH2O/kgdryairν2=0.8501m3/kgdryair

Here, final specific volume is ν2.

Refer Table A-4, “saturated water-temperature table”, and write the enthalpy of water at temperature of 20°C.

hw=hf@20°C=83.915kJ/kg

Here, specific enthalpy saturation liquid at temperature of 20°C is hf@20°C.

Perform unit conversion of diameter from cmtom.

D=40cm=40cm[m100cm]=0.4m

Substitute 120m/min for V1 and 0.4m for D in Equation (II).

ν˙1=(120m/min)[π(0.4m)24]=15.08m3/min

Substitute 15.08m3/min for ν˙1 and 0.8939m3/kgdryair for ν1 in Equation (III).

m˙a1=15.08m3/min0.8939m3/kgdryair=16.87kg/min

Substitute 16.87kg/min for m˙a1, 0.02114kgH2O/kgdryair for ω1 and 0.0147kgH2O/kgdryair for ω2 in Equation (IV).

m˙w=(16.87kg/min)(0.021140.0147)=0.1086kg/min

Substitute 16.87kg/min for m˙a1, 86.35kJ/kgdryair for h1, 57.43kJ/kgdryair for h2, 0.1086kg/min for m˙w and 83.915kJ/kg for hw in Equation (V).

Q˙out=[(16.87kg/min)[(86.3557.43)kJ/kgdryair](0.1086kg/min)(83.915kJ/kg)]=478.7kJ/min

Hence, the rate of heat transfer is 478.7kJ/min.

(b)

Expert Solution
Check Mark
To determine

The mass flow rate of the water.

Answer to Problem 78P

The mass flow rate of the water is 19.09kg/min.

Explanation of Solution

Express the mass flow rate of the water.

m˙coolingwater=Q˙wcpΔT (VIII)

Here, mass flow rate of the water is Q˙w, specific heat at constant pressure of water is cp and rise in temperature is ΔT.

Conclusion:

Refer Table A-2, “ideal-gas specific heats of various common gases”, and write specific heat at constant pressure of water.

cp=4.18kJ/kg°C

Substitute 478.7kJ/min for Q˙w, 4.18kJ/kg°C for cp and 6°C for ΔT in Equation (VIII).

m˙coolingwater=478.7kJ/min(4.18kJ/kg°C)(6°C)=19.09kg/min

Hence, the mass flow rate of the water is 19.09kg/min.

c)

Expert Solution
Check Mark
To determine

The exit velocity of the airstream.

Answer to Problem 78P

The exit velocity of the airstream is 114m/min.

Explanation of Solution

Express the exit velocity of the airstream.

V2=ν2ν1V1 (IX)

Conclusion:

Substitute 0.8939m3/kgdryair for ν1, 0.8501m3/kgdryair for ν2 and 120m/min for V1 in Equation (IX).

V2=0.8501m3/kgdryair0.8939m3/kgdryair(120m/min)=114m/min

Hence, the exit velocity of the airstream is 114m/min.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q Derive (continuity equation)? I want to derive clear mathematics.
motor supplies 200 kW at 6 Hz to flange A of the shaft shown in Figure. Gear B transfers 125 W of power to operating machinery in the factory, and the remaining power in the shaft is mansferred by gear D. Shafts (1) and (2) are solid aluminum (G = 28 GPa) shafts that have the same diameter and an allowable shear stress of t= 40 MPa. Shaft (3) is a solid steel (G = 80 GPa) shaft with an allowable shear stress of t = 55 MPa. Determine: a) the minimum permissible diameter for aluminum shafts (1) and (2) b) the minimum permissible diameter for steel shaft (3). c) the rotation angle of gear D with respect to flange A if the shafts have the minimum permissible diameters as determined in (a) and (b).
First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³

Chapter 14 Solutions

EBK THERMODYNAMICS: AN ENGINEERING APPR

Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 12PCh. 14.7 - Prob. 13PCh. 14.7 - 14–13 A room contains air at 20°C and 98 kPa at a...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Prob. 17PCh. 14.7 - Prob. 18PCh. 14.7 - Prob. 19PCh. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Prob. 23PCh. 14.7 - Prob. 24PCh. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - Prob. 28PCh. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Prob. 37PCh. 14.7 - Prob. 39PCh. 14.7 - Prob. 41PCh. 14.7 - Prob. 42PCh. 14.7 - Prob. 43PCh. 14.7 - Prob. 44PCh. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - Prob. 47PCh. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 55PCh. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 63PCh. 14.7 - Prob. 64PCh. 14.7 - Prob. 65PCh. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 68PCh. 14.7 - Prob. 69PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Prob. 72PCh. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 74PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Prob. 76PCh. 14.7 - Prob. 77PCh. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - Prob. 81PCh. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 88PCh. 14.7 - Prob. 89PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 93PCh. 14.7 - Prob. 94PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Prob. 98PCh. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - Prob. 108PCh. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Prob. 112PCh. 14.7 - Prob. 113RPCh. 14.7 - Prob. 114RPCh. 14.7 - Prob. 115RPCh. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - 14–121 The relative humidity inside dacha of Prob....Ch. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - 14–126E Air at 15 psia, 60°F, and 70 percent...Ch. 14.7 - Prob. 127RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 129RPCh. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - 14–131 Air enters an air-conditioning system that...Ch. 14.7 - Prob. 132RPCh. 14.7 - Prob. 133RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 138RPCh. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - Prob. 143FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...Ch. 14.7 - Prob. 148FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY