Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
thumb_up100%
Chapter 14.7, Problem 100P
Two airstreams are mixed steadily and adiabatically. The first stream enters at 35°C and 30 percent relative humidity at a rate of 15 m3/min, while the second stream enters at 12°C and 90 percent relative humidity at a rate of 25 m3/min. Assuming that the mixing process occurs at a pressure of 1 atm, determine the specific humidity, the relative humidity, the dry-bulb temperature, and the volume flow rate of the mixture.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two airstreams are mixed steadily and adiabatically. The first stream enters at 35OC and 30 percent relative humidity at a rate of 15 m3 /min, while the second stream enters at 12OC and 90 percent relative humidity at a rate of 25 m3 /min. Assuming that the mixing process occurs at a pressure of 1 atm, determine the
The specific humidity, Answer
The relative humidity, Answer
The dry-bulb temperature Answer
The volume flow rate of the mixture Answer
PLEASE ANSWER THIS PROBLEM...
Two airstreams are mixed steadily and adiabatically. The first stream enters at 35OC and 30 percent relative humidity at a rate of 15 m3 /min, while the second stream enters at 12OC and 90 percent relative humidity at a rate of 25 m3 /min. Assuming that the mixing process occurs at a pressure of 1 atm, determine the
The specific humidity?
The relative humidity?
The dry-bulb temperature Answer?
The volume flow rate of the mixture?
Two air streams are mixed steadily and adiabatically. The first stream enters at 32Cº
and 40 percent relative humidity at a rate of 20 m³/min, while the second stream enters at
12C and 90 percent relative humidity at a rate of 25 m³/min. Assuming that the mixing
process occurs at a pressure of 95 KPa, determine the humidity ratio, the relative humidity,
he dry bulb temperature, and the volume flow rate of the mixture.
*
Chapter 14 Solutions
Thermodynamics: An Engineering Approach
Ch. 14.7 - What is the difference between dry air and...Ch. 14.7 - What is the difference between the specific...Ch. 14.7 - Can the water vapor in air be treated as an ideal...Ch. 14.7 - Is the relative humidity of saturated air...Ch. 14.7 - Is it possible to obtain saturated air from...Ch. 14.7 - Moist air is passed through a cooling section...Ch. 14.7 - How will (a) the specific humidity and (b) the...Ch. 14.7 - Prob. 8PCh. 14.7 - Consider a tank that contains moist air at 3 atm...Ch. 14.7 - Why are the chilled water lines always wrapped...
Ch. 14.7 - A tank contains 15 kg of dry air and 0.17 kg of...Ch. 14.7 - Prob. 12PCh. 14.7 - Prob. 13PCh. 14.7 - 14–13 A room contains air at 20°C and 98 kPa at a...Ch. 14.7 - A room contains air at 85F and 13.5 psia at a...Ch. 14.7 - An 8-m3 tank contains saturated air at 30C, 105...Ch. 14.7 - Prob. 17PCh. 14.7 - Prob. 18PCh. 14.7 - Prob. 19PCh. 14.7 - Andy and Wendy both wear glasses. On a cold winter...Ch. 14.7 - In summer, the outer surface of a glass filled...Ch. 14.7 - In some climates, cleaning the ice off the...Ch. 14.7 - Prob. 23PCh. 14.7 - Prob. 24PCh. 14.7 - Prob. 25PCh. 14.7 - Prob. 26PCh. 14.7 - A thirsty woman opens the refrigerator and picks...Ch. 14.7 - Prob. 28PCh. 14.7 - The air in a room has a dry-bulb temperature of...Ch. 14.7 - Prob. 31PCh. 14.7 - Prob. 32PCh. 14.7 - How do constant-enthalpy and...Ch. 14.7 - At what states on the psychrometric chart are the...Ch. 14.7 - How is the dew-point temperature at a specified...Ch. 14.7 - Can the enthalpy values determined from a...Ch. 14.7 - Prob. 37PCh. 14.7 - Prob. 39PCh. 14.7 - Prob. 41PCh. 14.7 - Prob. 42PCh. 14.7 - Prob. 43PCh. 14.7 - Prob. 44PCh. 14.7 - What does a modern air-conditioning system do...Ch. 14.7 - How does the human body respond to (a) hot...Ch. 14.7 - Prob. 47PCh. 14.7 - How does the air motion in the vicinity of the...Ch. 14.7 - Consider a tennis match in cold weather where both...Ch. 14.7 - Prob. 50PCh. 14.7 - Prob. 51PCh. 14.7 - Prob. 52PCh. 14.7 - What is metabolism? What is the range of metabolic...Ch. 14.7 - What is sensible heat? How is the sensible heat...Ch. 14.7 - Prob. 55PCh. 14.7 - Prob. 56PCh. 14.7 - Prob. 57PCh. 14.7 - Prob. 58PCh. 14.7 - Repeat Prob. 1459 for an infiltration rate of 1.8...Ch. 14.7 - An average person produces 0.25 kg of moisture...Ch. 14.7 - An average (1.82 kg or 4.0 lbm) chicken has a...Ch. 14.7 - How do relative and specific humidities change...Ch. 14.7 - Prob. 63PCh. 14.7 - Prob. 64PCh. 14.7 - Prob. 65PCh. 14.7 - Humid air at 40 psia, 50F, and 90 percent relative...Ch. 14.7 - Air enters a 30-cm-diameter cooling section at 1...Ch. 14.7 - Prob. 68PCh. 14.7 - Prob. 69PCh. 14.7 - Why is heated air sometimes humidified?Ch. 14.7 - Air at 1 atm, 15C, and 60 percent relative...Ch. 14.7 - Prob. 72PCh. 14.7 - An air-conditioning system operates at a total...Ch. 14.7 - Prob. 74PCh. 14.7 - Why is cooled air sometimes reheated in summer...Ch. 14.7 - Prob. 76PCh. 14.7 - Prob. 77PCh. 14.7 - Air enters a 40-cm-diameter cooling section at 1...Ch. 14.7 - Repeat Prob. 1479 for a total pressure of 88 kPa...Ch. 14.7 - Prob. 81PCh. 14.7 - Prob. 83PCh. 14.7 - Prob. 84PCh. 14.7 - Prob. 85PCh. 14.7 - Atmospheric air at 1 atm, 32C, and 95 percent...Ch. 14.7 - Prob. 88PCh. 14.7 - Prob. 89PCh. 14.7 - Does an evaporation process have to involve heat...Ch. 14.7 - Prob. 93PCh. 14.7 - Prob. 94PCh. 14.7 - Air at 1 atm, 20C, and 70 percent relative...Ch. 14.7 - Two unsaturated airstreams are mixed...Ch. 14.7 - Consider the adiabatic mixing of two airstreams....Ch. 14.7 - Prob. 98PCh. 14.7 - Two airstreams are mixed steadily and...Ch. 14.7 - A stream of warm air with a dry-bulb temperature...Ch. 14.7 - Prob. 104PCh. 14.7 - How does a natural-draft wet cooling tower work?Ch. 14.7 - What is a spray pond? How does its performance...Ch. 14.7 - The cooling water from the condenser of a power...Ch. 14.7 - Prob. 108PCh. 14.7 - A wet cooling tower is to cool 60 kg/s of water...Ch. 14.7 - Prob. 110PCh. 14.7 - Prob. 111PCh. 14.7 - Prob. 112PCh. 14.7 - Prob. 113RPCh. 14.7 - Prob. 114RPCh. 14.7 - Prob. 115RPCh. 14.7 - Prob. 116RPCh. 14.7 - Prob. 117RPCh. 14.7 - Prob. 118RPCh. 14.7 - Prob. 119RPCh. 14.7 - Prob. 120RPCh. 14.7 - 14–121 The relative humidity inside dacha of Prob....Ch. 14.7 - Prob. 122RPCh. 14.7 - Prob. 124RPCh. 14.7 - 14–126E Air at 15 psia, 60°F, and 70 percent...Ch. 14.7 - Prob. 127RPCh. 14.7 - Air enters a cooling section at 97 kPa, 35C, and...Ch. 14.7 - Prob. 129RPCh. 14.7 - Humid air at 101.3 kPa, 36C dry bulb and 65...Ch. 14.7 - 14–131 Air enters an air-conditioning system that...Ch. 14.7 - Prob. 132RPCh. 14.7 - Prob. 133RPCh. 14.7 - Conditioned air at 13C and 90 percent relative...Ch. 14.7 - Prob. 138RPCh. 14.7 - A room is filled with saturated moist air at 25C...Ch. 14.7 - Prob. 141FEPCh. 14.7 - A 40-m3 room contains air at 30C and a total...Ch. 14.7 - Prob. 143FEPCh. 14.7 - The air in a house is at 25C and 65 percent...Ch. 14.7 - On the psychrometric chart, a cooling and...Ch. 14.7 - On the psychrometric chart, a heating and...Ch. 14.7 - An airstream at a specified temperature and...Ch. 14.7 - Prob. 148FEPCh. 14.7 - Air at a total pressure of 90 kPa, 15C, and 75...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air enters a heating section at 95 kPa, 10°C, and 30 percent relative humidity at a rate of 6.2 m3/min, and it leaves at 25 C Use data from the tables. Determine the rate of heat transfer in the heating section The rate of heat transfer is [ kJ/minarrow_forwardAn incoming air flow of 200 m3/h at a temperature of 20°C and a humidity ratio of 0.012 kgv/kga is mixed in a chamber with another incoming air flow of 500 m3/h at a temperature of 15°C and a humidity ratio of 0.008 kgv/kga. Based on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardMoist air flowing at 2 kg/s and a dry bulb temperature of 50 C and wet bulb temperature of 30C mixes with another stream of moist air flowing at 3 kg/s at 25C and relative humidity of 65%. Using a psychrometric chart, determine the (a) humidity ratio, (b) enthalpy, and (c) dry bulb temperature of the two streams mixed together.arrow_forward
- Moist air enters an air conditioning unit at 40°C dry bulb temperature and 45% relative humidity. The air is first passed over cooling coils to remove all of the moisture necessary to achieve the final moisture content and then is passed over heating coils to achieve the final conditions of 20°C dry bulb temperature and 10°C wet bulb temperature. The pressure remains constant at 1 atm throughout the process. (a) Sketch the psychometric diagram for the process. (b) Determine the dew point temperature of the mixture at the inlet of the cooling coils and at the inlet of the heating coils. (c) Calculate the net heat transfer for the entire process, in kJ/kg dry air.arrow_forwardSaturated air at 20°C at a rate of 70 m /min is mixed adiabatically with the outside air at 35°C and 50% RH at a rate of 30 m3 /min. Assuming that the mixing process occurs at a pressure of 1 atrn, determine the specific humidity, the relative humidity, and dry bulb temperature and volume flow rate of the mixture.arrow_forwardSaturated air at 13 °C and 1 atm enters the heating section of an air-conditioning system at a rate of 0.5 kg/s and leaves 30 °C. Determine the rate of heat transfer to the air and the exit relative humidity.arrow_forward
- Outdoor air at 35°C dry-bulb and 19°C dewpoint temperatures are to be mixed with room air at 26°C dry-bulb temperature and specific humidity of 0.0105 kgv/kga. The mass of outdoor air is one-third of the mass of the mixture. Find the following properties of the mixed air: Dry-bulb temperature Specific humidity Enthalpy Relative humidity Dewpoint temperature Specific volumearrow_forwardAir at 5 °C and 80% relative humidity that flows at a rate of 2 kg/ s is mixed with 4kg/ s of air at 50 °C and 20% relative humidity in a steady flow adiabatic process.Calculate the final mixture temperature and its humidity ratio.arrow_forwardThe air in a room (24.0°C and 30% humidity) with a volume of 96.6 m3 must be replaced every 5 minutes. Outside air at 38.0°C and 70% humidity is chilled to remove some of its water content and then dehumidified to the required temperature. What is the volumetric flow rate (in m3/min) of the humid air entering the chiller?arrow_forward
- 28 m3/min of air at 43°C dry bulb temperature and 15% relative humidity are mixed adiabatically with 14.0 m3/min of air at 18°Cdb temperature and 90% relative humidity. Calculate for the final Humidity Ratio (kgwv/kgda)? <Psat 43°C = 8.649 kPa, Psat 18°C = 2.064kPa>arrow_forwardMoist air at 105 kPa, 30° C and 80% relative humidity flows over a cooling coil in an insulated air-conditioning duct. Saturated air exists the duct at 100kPa and 15°C. The saturation pressure of water at 30° C and 15°C are 4.24 kPa and 1.7 kPa, respectively. Molecular weight of water is 18 g/mol and that of air is 28.94 g/mol. The mass of water condensing out from the duct is ... g/kg of dry air (round off to 2 decimal places).arrow_forward8. Moist air undergoes a heating and humidification process at a pressure of 101.325 kPa from an initial state of 15°C db and 90% relative humidity to a final state at 22°C and 70% relative humidity. If the mass flow rate of the air at the initial state is 24.5 kg da/s, what is the increase in the water content of the air? Express your answer in kg/s. In your written solution, draw the process in the psychrometric chart, show the initial and final state and the values obtained from the chart.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY