To find: Instantaneous Velocity of a Ball In physics it is shown that the height of a ball thrown straight down with an initial velocity of from rooftop 160 feet high is,
where is the elapsed time that the ball is in the air.
a. When does the ball strike the ground? That is, how long is the ball in the air?
Answer to Problem 48AYU
Solution:
a.
Explanation of Solution
Given:
Calculation:
a. The ball strike the ground when .
discard the solution , the strikes the ground after .
To find: Instantaneous Velocity of a Ball In physics it is shown that the height of a ball thrown straight down with an initial velocity of from rooftop 160 feet high is,
where is the elapsed time that the ball is in the air.
b. What is the average velocity of the ball from ?
Answer to Problem 48AYU
Solution:
b.
Explanation of Solution
Given:
Calculation:
b. The average velocity of the ball from is,
To find: Instantaneous Velocity of a Ball In physics it is shown that the height of a ball thrown straight down with an initial velocity of from rooftop 160 feet high is,
where is the elapsed time that the ball is in the air.
c. What is the instantaneous velocity of the ball at time ?
Answer to Problem 48AYU
Solution:
c.
Explanation of Solution
Given:
Calculation:
c. The instantaneous velocity of the ball at time is the derivative : that is,
Replace . the instantaneous velocity of the ball at time t is,
To find: Instantaneous Velocity of a Ball In physics it is shown that the height of a ball thrown straight down with an initial velocity of from rooftop 160 feet high is,
where is the elapsed time that the ball is in the air.
d. What is the instantaneous velocity of the ball at ?
Answer to Problem 48AYU
Solution:
d.
Explanation of Solution
Given:
Calculation:
d. The instantaneous velocity of the ball at is,
To find: Instantaneous Velocity of a Ball In physics it is shown that the height of a ball thrown straight down with an initial velocity of from rooftop 160 feet high is,
where is the elapsed time that the ball is in the air.
e. What is the instantaneous velocity of the ball when it strikes the ground?
Answer to Problem 48AYU
Solution:
e.
Explanation of Solution
Given:
Calculation:
e. The ball strikes the ground when , the instantaneous velocity when is,
The velocity of the ball at is , the negative value implies that the ball is travelling downward.
Chapter 14 Solutions
Precalculus
Additional Math Textbook Solutions
Pre-Algebra Student Edition
Thinking Mathematically (6th Edition)
A First Course in Probability (10th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
Basic Business Statistics, Student Value Edition
Algebra and Trigonometry (6th Edition)
- help pleasearrow_forwardIn each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forwardB 2- The figure gives four points and some corresponding rays in the xy-plane. Which of the following is true? A B Angle COB is in standard position with initial ray OB and terminal ray OC. Angle COB is in standard position with initial ray OC and terminal ray OB. C Angle DOB is in standard position with initial ray OB and terminal ray OD. D Angle DOB is in standard position with initial ray OD and terminal ray OB.arrow_forward
- temperature in degrees Fahrenheit, n hours since midnight. 5. The temperature was recorded at several times during the day. Function T gives the Here is a graph for this function. To 29uis a. Describe the overall trend of temperature throughout the day. temperature (Fahrenheit) 40 50 50 60 60 70 5 10 15 20 25 time of day b. Based on the graph, did the temperature change more quickly between 10:00 a.m. and noon, or between 8:00 p.m. and 10:00 p.m.? Explain how you know. (From Unit 4, Lesson 7.) 6. Explain why this graph does not represent a function. (From Unit 4, Lesson 8.)arrow_forwardFind the area of the shaded region. (a) 5- y 3 2- (1,4) (5,0) 1 3 4 5 6 (b) 3 y 2 Decide whether the problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the problem seems to require calculus, use a graphical or numerical approach to estimate the solution. STEP 1: Consider the figure in part (a). Since this region is simply a triangle, you may use precalculus methods to solve this part of the problem. First determine the height of the triangle and the length of the triangle's base. height 4 units units base 5 STEP 2: Compute the area of the triangle by employing a formula from precalculus, thus finding the area of the shaded region in part (a). 10 square units STEP 3: Consider the figure in part (b). Since this region is defined by a complicated curve, the problem seems to require calculus. Find an approximation of the shaded region by using a graphical approach. (Hint: Treat the shaded regi as…arrow_forwardSolve this differential equation: dy 0.05y(900 - y) dt y(0) = 2 y(t) =arrow_forward
- Suppose that you are holding your toy submarine under the water. You release it and it begins to ascend. The graph models the depth of the submarine as a function of time. What is the domain and range of the function in the graph? 1- t (time) 1 2 4/5 6 7 8 -2 -3 456700 -4 -5 -6 -7 d (depth) -8 D: 00 t≤ R:arrow_forward0 5 -1 2 1 N = 1 to x = 3 Based on the graph above, estimate to one decimal place the average rate of change from x =arrow_forwardComplete the description of the piecewise function graphed below. Use interval notation to indicate the intervals. -7 -6 -5 -4 30 6 5 4 3 0 2 1 -1 5 6 + -2 -3 -5 456 -6 - { 1 if x Є f(x) = { 1 if x Є { 3 if x Єarrow_forwardComplete the description of the piecewise function graphed below. 6 5 -7-6-5-4-3-2-1 2 3 5 6 -1 -2 -3 -4 -5 { f(x) = { { -6 if -6x-2 if -2< x <1 if 1 < x <6arrow_forwardLet F = V where (x, y, z) x2 1 + sin² 2 +z2 and let A be the line integral of F along the curve x = tcost, y = t sint, z=t, starting on the plane z = 6.14 and ending on the plane z = 4.30. Then sin(3A) is -0.598 -0.649 0.767 0.278 0.502 0.010 -0.548 0.960arrow_forwardLet C be the intersection of the cylinder x² + y² = 2.95 with the plane z = 1.13x, with the clockwise orientation, as viewed from above. Then the value of cos (₤23 COS 2 y dx xdy+3 z dzis 3 z dz) is 0.131 -0.108 -0.891 -0.663 -0.428 0.561 -0.332 -0.387arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning