
Precalculus
9th Edition
ISBN: 9780321716835
Author: Michael Sullivan
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 69AYU
Expert Solution & Answer

To determine
To find: The numbers at which is continuous.
Answer to Problem 69AYU
Continuous for all real values of excluding .
Explanation of Solution
Given:
Calculation:
is a rational function.
The denominator of is zero for ie for .
Since is undefined for ; therefore is continuous for all real numbers excluding .
Chapter 14 Solutions
Precalculus
Ch. 14.1 - Graph f( x )={ 3x2ifx2 3ifx=2 (pp.100-102)Ch. 14.1 - Prob. 2AYUCh. 14.1 - Prob. 3AYUCh. 14.1 - Prob. 4AYUCh. 14.1 - True or False lim xc f( x )=N may be described by...Ch. 14.1 - Prob. 6AYUCh. 14.1 - lim x2 ( 4 x 3 )Ch. 14.1 - lim x3 ( 2 x 2 +1 )Ch. 14.1 - lim x0 x+1 x 2 +1Ch. 14.1 - Prob. 10AYU
Ch. 14.1 - Prob. 11AYUCh. 14.1 - Prob. 12AYUCh. 14.1 - Prob. 13AYUCh. 14.1 - Prob. 14AYUCh. 14.1 - Prob. 15AYUCh. 14.1 - Prob. 16AYUCh. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - Prob. 20AYUCh. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - Prob. 22AYUCh. 14.1 - Prob. 23AYUCh. 14.1 - Prob. 24AYUCh. 14.1 - Prob. 25AYUCh. 14.1 - Prob. 26AYUCh. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - Prob. 28AYUCh. 14.1 - Prob. 29AYUCh. 14.1 - Prob. 30AYUCh. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - Prob. 32AYUCh. 14.1 - Prob. 33AYUCh. 14.1 - Prob. 34AYUCh. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - Prob. 38AYUCh. 14.1 - Prob. 39AYUCh. 14.1 - Prob. 40AYUCh. 14.1 - Prob. 41AYUCh. 14.1 - Prob. 42AYUCh. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - Prob. 44AYUCh. 14.1 - Prob. 45AYUCh. 14.1 - Prob. 46AYUCh. 14.1 - Prob. 47AYUCh. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.2 - Prob. 1AYUCh. 14.2 - Prob. 2AYUCh. 14.2 - Prob. 3AYUCh. 14.2 - Prob. 4AYUCh. 14.2 - Prob. 5AYUCh. 14.2 - Prob. 6AYUCh. 14.2 - Prob. 7AYUCh. 14.2 - Prob. 8AYUCh. 14.2 - Prob. 9AYUCh. 14.2 - Prob. 10AYUCh. 14.2 - Prob. 11AYUCh. 14.2 - Prob. 12AYUCh. 14.2 - Prob. 13AYUCh. 14.2 - Prob. 14AYUCh. 14.2 - Prob. 15AYUCh. 14.2 - Prob. 16AYUCh. 14.2 - Prob. 17AYUCh. 14.2 - Prob. 18AYUCh. 14.2 - Prob. 19AYUCh. 14.2 - Prob. 20AYUCh. 14.2 - Prob. 21AYUCh. 14.2 - Prob. 22AYUCh. 14.2 - Prob. 23AYUCh. 14.2 - Prob. 24AYUCh. 14.2 - Prob. 25AYUCh. 14.2 - Prob. 26AYUCh. 14.2 - Prob. 27AYUCh. 14.2 - Prob. 28AYUCh. 14.2 - Prob. 29AYUCh. 14.2 - Prob. 30AYUCh. 14.2 - Prob. 31AYUCh. 14.2 - Prob. 32AYUCh. 14.2 - Prob. 33AYUCh. 14.2 - Prob. 34AYUCh. 14.2 - Prob. 35AYUCh. 14.2 - Prob. 36AYUCh. 14.2 - Prob. 37AYUCh. 14.2 - Prob. 38AYUCh. 14.2 - Prob. 39AYUCh. 14.2 - Prob. 40AYUCh. 14.2 - Prob. 41AYUCh. 14.2 - Prob. 42AYUCh. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - Prob. 44AYUCh. 14.2 - Prob. 45AYUCh. 14.2 - Prob. 46AYUCh. 14.2 - Prob. 47AYUCh. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - Prob. 49AYUCh. 14.2 - Prob. 50AYUCh. 14.2 - Prob. 51AYUCh. 14.2 - Prob. 52AYUCh. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - Prob. 54AYUCh. 14.2 - Prob. 55AYUCh. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.3 - For the function f( x )={ x 2 ifx0 x+1if0x2...Ch. 14.3 - Prob. 2AYUCh. 14.3 - Prob. 3AYUCh. 14.3 - Prob. 4AYUCh. 14.3 - Prob. 5AYUCh. 14.3 - Prob. 6AYUCh. 14.3 - Prob. 7AYUCh. 14.3 - Prob. 8AYUCh. 14.3 - Prob. 9AYUCh. 14.3 - Prob. 10AYUCh. 14.3 - Prob. 11AYUCh. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - Prob. 14AYUCh. 14.3 - Prob. 15AYUCh. 14.3 - Prob. 16AYUCh. 14.3 - Prob. 17AYUCh. 14.3 - Prob. 18AYUCh. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - Prob. 20AYUCh. 14.3 - Find lim x 4 f( x ) .Ch. 14.3 - Prob. 22AYUCh. 14.3 - Find lim x 2 f( x ) .Ch. 14.3 - Prob. 24AYUCh. 14.3 - Does lim x4 f( x ) exist? If it does, what is it?Ch. 14.3 - Prob. 26AYUCh. 14.3 - Is f continuous at 4 ?Ch. 14.3 - Prob. 28AYUCh. 14.3 - Is f continuous at 0?Ch. 14.3 - Prob. 30AYUCh. 14.3 - Is f continuous at 4?Ch. 14.3 - Prob. 32AYUCh. 14.3 - Prob. 33AYUCh. 14.3 - Prob. 34AYUCh. 14.3 - Prob. 35AYUCh. 14.3 - Prob. 36AYUCh. 14.3 - Prob. 37AYUCh. 14.3 - Prob. 38AYUCh. 14.3 - lim x 2 + x 2 4 x2Ch. 14.3 - lim x 1 x 3 x x1Ch. 14.3 - lim x 1 x 2 1 x 3 +1Ch. 14.3 - Prob. 42AYUCh. 14.3 - Prob. 43AYUCh. 14.3 - Prob. 44AYUCh. 14.3 - Prob. 45AYUCh. 14.3 - Prob. 46AYUCh. 14.3 - Prob. 47AYUCh. 14.3 - Prob. 48AYUCh. 14.3 - f( x )= x+3 x3 c=3Ch. 14.3 - Prob. 50AYUCh. 14.3 - Prob. 51AYUCh. 14.3 - Prob. 52AYUCh. 14.3 - Prob. 53AYUCh. 14.3 - Prob. 54AYUCh. 14.3 - Prob. 55AYUCh. 14.3 - Prob. 56AYUCh. 14.3 - f( x )={ x 3 1 x 2 1 ifx1 2ifx=1 3 x+1 ifx1 c=1Ch. 14.3 - Prob. 58AYUCh. 14.3 - Prob. 59AYUCh. 14.3 - Prob. 60AYUCh. 14.3 - Prob. 61AYUCh. 14.3 - Prob. 62AYUCh. 14.3 - Prob. 63AYUCh. 14.3 - Prob. 64AYUCh. 14.3 - Prob. 65AYUCh. 14.3 - Prob. 66AYUCh. 14.3 - Prob. 67AYUCh. 14.3 - Prob. 68AYUCh. 14.3 - f( x )= 2x+5 x 2 4Ch. 14.3 - Prob. 70AYUCh. 14.3 - Prob. 71AYUCh. 14.3 - Prob. 72AYUCh. 14.3 - Prob. 73AYUCh. 14.3 - Prob. 74AYUCh. 14.3 - Prob. 75AYUCh. 14.3 - Prob. 76AYUCh. 14.3 - Prob. 77AYUCh. 14.3 - Prob. 78AYUCh. 14.3 - Prob. 79AYUCh. 14.3 - Prob. 80AYUCh. 14.3 - Prob. 81AYUCh. 14.3 - Prob. 82AYUCh. 14.3 - Prob. 83AYUCh. 14.3 - Prob. 84AYUCh. 14.3 - Prob. 85AYUCh. 14.3 - Prob. 86AYUCh. 14.3 - Prob. 87AYUCh. 14.3 - Prob. 88AYUCh. 14.3 - Prob. 89AYUCh. 14.3 - Prob. 90AYUCh. 14.4 - Prob. 1AYUCh. 14.4 - Prob. 2AYUCh. 14.4 - Prob. 3AYUCh. 14.4 - lim xc f( x )f( c ) xc exists, it is called the...Ch. 14.4 - Prob. 5AYUCh. 14.4 - Prob. 6AYUCh. 14.4 - Prob. 7AYUCh. 14.4 - Prob. 8AYUCh. 14.4 - Prob. 9AYUCh. 14.4 - f( x )=2x+1 at ( 1,3 )Ch. 14.4 - Prob. 11AYUCh. 14.4 - Prob. 12AYUCh. 14.4 - Prob. 13AYUCh. 14.4 - Prob. 14AYUCh. 14.4 - Prob. 15AYUCh. 14.4 - Prob. 16AYUCh. 14.4 - Prob. 17AYUCh. 14.4 - Prob. 18AYUCh. 14.4 - Prob. 19AYUCh. 14.4 - Prob. 20AYUCh. 14.4 - Prob. 21AYUCh. 14.4 - Prob. 22AYUCh. 14.4 - Prob. 23AYUCh. 14.4 - Prob. 24AYUCh. 14.4 - Prob. 25AYUCh. 14.4 - Prob. 26AYUCh. 14.4 - Prob. 27AYUCh. 14.4 - Prob. 28AYUCh. 14.4 - Prob. 29AYUCh. 14.4 - Prob. 30AYUCh. 14.4 - Prob. 31AYUCh. 14.4 - Prob. 32AYUCh. 14.4 - Prob. 33AYUCh. 14.4 - Prob. 34AYUCh. 14.4 - Prob. 35AYUCh. 14.4 - Prob. 36AYUCh. 14.4 - Prob. 37AYUCh. 14.4 - Prob. 38AYUCh. 14.4 - Prob. 39AYUCh. 14.4 - Prob. 40AYUCh. 14.4 - Prob. 41AYUCh. 14.4 - Prob. 42AYUCh. 14.4 - Prob. 43AYUCh. 14.4 - Prob. 44AYUCh. 14.4 - Prob. 45AYUCh. 14.4 - Prob. 46AYUCh. 14.4 - Prob. 47AYUCh. 14.4 - Prob. 48AYUCh. 14.4 - Instantaneous Velocity on the Moon Neil Armstrong...Ch. 14.4 - Prob. 50AYUCh. 14.5 - In Problems 29-32, find the first five terms in...Ch. 14.5 - Prob. 2AYUCh. 14.5 - Prob. 3AYUCh. 14.5 - Prob. 4AYUCh. 14.5 - In Problems 5 and 6, refer to the illustration....Ch. 14.5 - Prob. 6AYUCh. 14.5 - Prob. 7AYUCh. 14.5 - Prob. 8AYUCh. 14.5 - Prob. 9AYUCh. 14.5 - Prob. 10AYUCh. 14.5 - Prob. 11AYUCh. 14.5 - Prob. 12AYUCh. 14.5 - Prob. 13AYUCh. 14.5 - Prob. 14AYUCh. 14.5 - Prob. 15AYUCh. 14.5 - Prob. 16AYUCh. 14.5 - Prob. 17AYUCh. 14.5 - Prob. 18AYUCh. 14.5 - Prob. 19AYUCh. 14.5 - Prob. 20AYUCh. 14.5 - Prob. 21AYUCh. 14.5 - Prob. 22AYUCh. 14.5 - Prob. 23AYUCh. 14.5 - Prob. 24AYUCh. 14.5 - In Problems 23-30, an integral is given. (a) What...Ch. 14.5 - Prob. 26AYUCh. 14.5 - Prob. 27AYUCh. 14.5 - Prob. 28AYUCh. 14.5 - Prob. 29AYUCh. 14.5 - Prob. 30AYUCh. 14.5 - Prob. 31AYUCh. 14.5 - Prob. 32AYUCh. 14 - Prob. 1RECh. 14 - Prob. 2RECh. 14 - Prob. 3RECh. 14 - Prob. 4RECh. 14 - Prob. 5RECh. 14 - Prob. 6RECh. 14 - Prob. 7RECh. 14 - Prob. 8RECh. 14 - Prob. 9RECh. 14 - Prob. 10RECh. 14 - Prob. 11RECh. 14 - Prob. 12RECh. 14 - Prob. 13RECh. 14 - Prob. 14RECh. 14 - Prob. 15RECh. 14 - Prob. 16RECh. 14 - Prob. 17RECh. 14 - Prob. 18RECh. 14 - Prob. 19RECh. 14 - Prob. 20RECh. 14 - Prob. 21RECh. 14 - Prob. 22RECh. 14 - Prob. 23RECh. 14 - Prob. 24RECh. 14 - Prob. 25RECh. 14 - Prob. 26RECh. 14 - Prob. 27RECh. 14 - Prob. 28RECh. 14 - Prob. 29RECh. 14 - Prob. 30RECh. 14 - Prob. 31RECh. 14 - Prob. 32RECh. 14 - Prob. 33RECh. 14 - Prob. 34RECh. 14 - Prob. 35RECh. 14 - Prob. 36RECh. 14 - Prob. 37RECh. 14 - Prob. 38RECh. 14 - Prob. 39RECh. 14 - Prob. 40RECh. 14 - Prob. 41RECh. 14 - Prob. 42RECh. 14 - Prob. 43RECh. 14 - Prob. 44RECh. 14 - Prob. 45RECh. 14 - Prob. 46RECh. 14 - Prob. 47RECh. 14 - Prob. 48RECh. 14 - Prob. 49RECh. 14 - Prob. 50RECh. 14 - Prob. 51RECh. 14 - Prob. 52RECh. 14 - Prob. 53RECh. 14 - Prob. 54RECh. 14 - Prob. 55RECh. 14 - Prob. 56RECh. 14 - Prob. 57RECh. 14 - Prob. 58RECh. 14 - Prob. 59RECh. 14 - Prob. 60RECh. 14 - Prob. 61RECh. 14 - Prob. 62RECh. 14 - Prob. 63RECh. 14 - Prob. 64RECh. 14 - Prob. 65RECh. 14 - Prob. 66RECh. 14 - Prob. 67RECh. 14 - Prob. 68RECh. 14 - Prob. 69RECh. 14 - Prob. 70RECh. 14 - Prob. 71RECh. 14 - Prob. 72RECh. 14 - Prob. 73RECh. 14 - Prob. 74RECh. 14 - Prob. 75RECh. 14 - Prob. 76RECh. 14 - Prob. 77RECh. 14 - Prob. 78RECh. 14 - Prob. 79RECh. 14 - Prob. 80RECh. 14 - Prob. 81RECh. 14 - Prob. 82RECh. 14 - Prob. 83RECh. 14 - Prob. 84RECh. 14 - Prob. 1CTCh. 14 - Prob. 2CTCh. 14 - Prob. 3CTCh. 14 - Prob. 4CTCh. 14 - Prob. 5CTCh. 14 - Prob. 6CTCh. 14 - Prob. 7CTCh. 14 - Prob. 8CTCh. 14 - Prob. 9CTCh. 14 - Prob. 10CTCh. 14 - Prob. 11CTCh. 14 - Prob. 12CTCh. 14 - Prob. 13CTCh. 14 - Prob. 14CTCh. 14 - Prob. 15CTCh. 14 - Prob. 16CTCh. 14 - An object is moving along a straight line...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Length of a Guy Wire A communications tower is located at the top of a steep hill, as shown. The angle of incli...
Precalculus: Mathematics for Calculus (Standalone Book)
CHECK POINT I Let p and q represent the following statements: p : 3 + 5 = 8 q : 2 × 7 = 20. Determine the truth...
Thinking Mathematically (6th Edition)
Evaluate the integrals in Exercises 17–66.
25.
University Calculus: Early Transcendentals (4th Edition)
4. Notation What does the notation z? indicate?
Elementary Statistics (13th Edition)
Explain the meaning of the term “statistically significant difference” in statistics terminology.
Intro Stats, Books a la Carte Edition (5th Edition)
If n is a counting number, bn, read______, indicates that there are n factors of b. The number b is called the_...
Algebra and Trigonometry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Consider the region below f(x) = (11-x), above the x-axis, and between x = 0 and x = 11. Let x; be the midpoint of the ith subinterval. Complete parts a. and b. below. a. Approximate the area of the region using eleven rectangles. Use the midpoints of each subinterval for the heights of the rectangles. The area is approximately square units. (Type an integer or decimal.)arrow_forwardRama/Shutterstock.com Romaset/Shutterstock.com The power station has three different hydroelectric turbines, each with a known (and unique) power function that gives the amount of electric power generated as a function of the water flow arriving at the turbine. The incoming water can be apportioned in different volumes to each turbine, so the goal of this project is to determine how to distribute water among the turbines to give the maximum total energy production for any rate of flow. Using experimental evidence and Bernoulli's equation, the following quadratic models were determined for the power output of each turbine, along with the allowable flows of operation: 6 KW₁ = (-18.89 +0.1277Q1-4.08.10 Q) (170 - 1.6 · 10¯*Q) KW2 = (-24.51 +0.1358Q2-4.69-10 Q¹²) (170 — 1.6 · 10¯*Q) KW3 = (-27.02 +0.1380Q3 -3.84-10-5Q) (170 - 1.6-10-ºQ) where 250 Q1 <1110, 250 Q2 <1110, 250 <3 < 1225 Qi = flow through turbine i in cubic feet per second KW = power generated by turbine i in kilowattsarrow_forwardHello! Please solve this practice problem step by step thanks!arrow_forward
- Hello, I would like step by step solution on this practive problem please and thanks!arrow_forwardHello! Please Solve this Practice Problem Step by Step thanks!arrow_forwarduestion 10 of 12 A Your answer is incorrect. L 0/1 E This problem concerns hybrid cars such as the Toyota Prius that are powered by a gas-engine, electric-motor combination, but can also function in Electric-Vehicle (EV) only mode. The figure below shows the velocity, v, of a 2010 Prius Plug-in Hybrid Prototype operating in normal hybrid mode and EV-only mode, respectively, while accelerating from a stoplight. 1 80 (mph) Normal hybrid- 40 EV-only t (sec) 5 15 25 Assume two identical cars, one running in normal hybrid mode and one running in EV-only mode, accelerate together in a straight path from a stoplight. Approximately how far apart are the cars after 15 seconds? Round your answer to the nearest integer. The cars are 1 feet apart after 15 seconds. Q Search M 34 mlp CHarrow_forward
- Find the volume of the region under the surface z = xy² and above the area bounded by x = y² and x-2y= 8. Round your answer to four decimal places.arrow_forwardУ Suppose that f(x, y) = · at which {(x, y) | 0≤ x ≤ 2,-x≤ y ≤√x}. 1+x D Q Then the double integral of f(x, y) over D is || | f(x, y)dxdy = | Round your answer to four decimal places.arrow_forwardD The region D above can be describe in two ways. 1. If we visualize the region having "top" and "bottom" boundaries, express each as functions of and provide the interval of x-values that covers the entire region. "top" boundary 92(x) = | "bottom" boundary 91(x) = interval of values that covers the region = 2. If we visualize the region having "right" and "left" boundaries, express each as functions of y and provide the interval of y-values that covers the entire region. "right" boundary f2(y) = | "left" boundary fi(y) =| interval of y values that covers the region =arrow_forward
- Find the volume of the region under the surface z = corners (0,0,0), (2,0,0) and (0,5, 0). Round your answer to one decimal place. 5x5 and above the triangle in the xy-plane witharrow_forwardGiven y = 4x and y = x² +3, describe the region for Type I and Type II. Type I 8. y + 2 -24 -1 1 2 2.5 X Type II N 1.5- x 1- 0.5 -0.5 -1 1 m y -2> 3 10arrow_forwardGiven D = {(x, y) | O≤x≤2, ½ ≤y≤1 } and f(x, y) = xy then evaluate f(x, y)d using the Type II technique. 1.2 1.0 0.8 y 0.6 0.4 0.2 0- -0.2 0 0.5 1 1.5 2 X X This plot is an example of the function over region D. The region identified in your problem will be slightly different. y upper integration limit Integral Valuearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY