Precalculus Enhanced with Graphing Utilities (7th Edition)
7th Edition
ISBN: 9780134119281
Author: Michael Sullivan, Michael Sullivan III
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.4, Problem 23SB
To determine
To find: The derivative of at 0.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
21. Determine for which values of m the function (x) = x™ is a solution to the given equation.
a. 3x2
d²y
dx²
b. x2 d²y
+11x
dy
- 3y = 0
dx
dy
dx2
x dx
5y
= 0
help me solve this
help me solve this
Chapter 14 Solutions
Precalculus Enhanced with Graphing Utilities (7th Edition)
Ch. 14.1 - Graph f( x )={ 3x2ifx2 3ifx=2 (pp.100-102)Ch. 14.1 - If f( x )={ xifx0 1ifx0 what is f( 0 ) ?...Ch. 14.1 - The limit of a function f( x ) as x approaches c...Ch. 14.1 - If a function f has no limit as x approaches c ,...Ch. 14.1 - True or False lim xc f( x )=N may be described by...Ch. 14.1 - True or False lim xc f( x ) exists and equals some...Ch. 14.1 - lim x2 ( 4 x 3 )Ch. 14.1 - lim x3 ( 2 x 2 +1 )Ch. 14.1 - lim x0 x+1 x 2 +1Ch. 14.1 - lim x0 2x x 2 +4
Ch. 14.1 - lim x4 x 2 4x x4Ch. 14.1 - lim x3 x 2 9 x 2 3xCh. 14.1 - lim x0 ( e x +1 )Ch. 14.1 - Prob. 14SBCh. 14.1 - lim x0 cosx1 x , x in radiansCh. 14.1 - lim x0 tanx x , x in radiansCh. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 17-22, use the graph shown to...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 23-42, graph each function. Use the...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - In Problems 43-48, use a graphing utility to find...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.1 - Problems 49-52 are based on material learned...Ch. 14.2 - The limit of the product of two functions equals...Ch. 14.2 - lim xc b= _____Ch. 14.2 - lim xc x= a. x b. c c. cx d. x cCh. 14.2 - True or False The limit of a polynomial function...Ch. 14.2 - True or False The limit of a rational function at...Ch. 14.2 - True or false The limit of a quotient equals the...Ch. 14.2 - In Problems 7- 42, find each limit algebraically....Ch. 14.2 - In Problems 7- 42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 7-42, find each limit algebraically....Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In Problems 43-52, find the limit as x approaches...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - In problems 53-56, use the properties of limits...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.2 - Problems 57-60 are based on material learned...Ch. 14.3 - For the function f( x )={ x 2 ifx0 x+1if0x2...Ch. 14.3 - What are the domain and range of f( x )=lnx ?Ch. 14.3 - True or False The exponential function f( x )= e x...Ch. 14.3 - Name the trigonometric functions that have...Ch. 14.3 - True or False Some rational functions have holes...Ch. 14.3 - True or False Every polynomial function has a...Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - In Problems 7-42, find each limit algebraically....Ch. 14.3 - Find lim x 4 f( x ) .Ch. 14.3 - Find lim x 4 + f( x ) .Ch. 14.3 - Find lim x 2 f( x ) .Ch. 14.3 - Find lim x 2 + f( x ) .Ch. 14.3 - Does lim x4 f( x ) exist? If it does, what is it?Ch. 14.3 - Does lim x0 f( x ) exist? If it does, what is it?Ch. 14.3 - Is f continuous at 4 ?Ch. 14.3 - Is f continuous at 6 ?Ch. 14.3 - Is f continuous at 0?Ch. 14.3 - Is f continuous at 2?Ch. 14.3 - Is f continuous at 4?Ch. 14.3 - Is f continuous at 5?Ch. 14.3 - lim x 1 + ( 2x+3 )Ch. 14.3 - lim x 2 ( 42x )Ch. 14.3 - lim x 1 ( 2 x 3 +5x )Ch. 14.3 - lim x 2 + ( 3 x 2 8 )Ch. 14.3 - lim x/ 2 + sinxCh. 14.3 - lim x ( 3cosx )Ch. 14.3 - lim x 2 + x 2 4 x2Ch. 14.3 - lim x 1 x 3 x x1Ch. 14.3 - lim x 1 x 2 1 x 3 +1Ch. 14.3 - lim x 0 + x 3 x 2 x 4 + x 2Ch. 14.3 - lim x 2 + x 2 +x2 x 2 +2xCh. 14.3 - lim x 4 x 2 +x12 x 2 +4xCh. 14.3 - f( x )= x 3 3 x 2 +2x6c=2Ch. 14.3 - f( x )=3 x 2 6x+5c=3Ch. 14.3 - f( x )= x 2 +5 x6 c=3Ch. 14.3 - f( x )= x 3 8 x 2 +4 c=2Ch. 14.3 - f( x )= x+3 x3 c=3Ch. 14.3 - f( x )= x6 x+6 c=6Ch. 14.3 - f( x )= x 3 +3x x 2 3x c=0Ch. 14.3 - f( x )= x 2 6x x 2 +6x c=0Ch. 14.3 - f( x )={ x 3 +3x x 2 3x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 2 6x x 2 +6x ifx0 2ifx=0 c=0Ch. 14.3 - f( x )={ x 3 +3x x 2 3x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 2 6x x 2 +6x ifx0 1ifx=0 c=0Ch. 14.3 - f( x )={ x 3 1 x 2 1 ifx1 2ifx=1 3 x+1 ifx1 c=1Ch. 14.3 - f( x )={ x 2 2x x2 ifx2 2ifx=2 x4 x1 ifx2 c=2Ch. 14.3 - f( x )={ 2 e x ifx0 2ifx=0 x 3 +2 x 2 x 2 ifx0 c=0Ch. 14.3 - f( x )={ 3cosxifx0 3ifx=0 x 3 +3 x 2 x 2 ifx0 c=0Ch. 14.3 - f( x )=2x+3Ch. 14.3 - f( x )=43xCh. 14.3 - f( x )=3 x 2 +xCh. 14.3 - f( x )=3 x 3 +7Ch. 14.3 - f( x )=4sinxCh. 14.3 - f( x )=2cosxCh. 14.3 - f( x )=2tanxCh. 14.3 - f( x )=4cscxCh. 14.3 - f( x )= 2x+5 x 2 4Ch. 14.3 - f( x )= x 2 4 x 2 9Ch. 14.3 - f( x )= x3 InxCh. 14.3 - f( x )= lnx x3Ch. 14.3 - R( x )= x1 x 2 1 , c=1 and c=1Ch. 14.3 - R( x )= 3x+6 x 2 4 , c=2 and c=2Ch. 14.3 - R( x )= x 2 +x x 2 1 , c=1 and c=1Ch. 14.3 - R( x )= x 2 +4x x 2 16 , c=4 and c=4Ch. 14.3 - R( x )= x 3 x 2 +x1 x 4 x 3 +2x2Ch. 14.3 - R( x )= x 3 + x 2 +3x+3 x 4 + x 3 +2x+2Ch. 14.3 - R( x )= x 3 2 x 2 +4x8 x 2 +x6Ch. 14.3 - R( x )= x 3 x 2 +3x3 x 2 +3x4Ch. 14.3 - R( x )= x 3 +2 x 2 +x x 4 + x 3 +2x+2Ch. 14.3 - R( x )= x 3 3 x 2 +4x12 x 4 3 x 3 +x3Ch. 14.3 - R( x )= x 3 x 2 +x1 x 4 x 3 +2x2 Graph R(x) .Ch. 14.3 - R( x )= x 3 + x 2 +3x+3 x 4 + x 3 +2x+2 Graph R( x...Ch. 14.3 - R(x)= ( x 3 2 x 2 +4x8) ( x 2 +x6) Graph R( x ) .Ch. 14.3 - Prob. 86SBCh. 14.3 - Prob. 87SBCh. 14.3 - Prob. 88SBCh. 14.3 - Prob. 89DWCh. 14.3 - Prob. 90DWCh. 14.3 - Prob. 91RYKCh. 14.3 - Evaluate the permutation P( 5,3 ) .Ch. 14.3 - Prob. 93RYKCh. 14.3 - Prob. 94RYKCh. 14.4 - Find an equation of the line with slope 5...Ch. 14.4 - Prob. 2AYPCh. 14.4 - Prob. 3CVCh. 14.4 - Prob. 4CVCh. 14.4 - Prob. 5CVCh. 14.4 - Prob. 6CVCh. 14.4 - Prob. 7CVCh. 14.4 - Prob. 8CVCh. 14.4 - Prob. 9SBCh. 14.4 - Prob. 10SBCh. 14.4 - Prob. 11SBCh. 14.4 - Prob. 12SBCh. 14.4 - Prob. 13SBCh. 14.4 - Prob. 14SBCh. 14.4 - Prob. 15SBCh. 14.4 - Prob. 16SBCh. 14.4 - Prob. 17SBCh. 14.4 - Prob. 18SBCh. 14.4 - Prob. 19SBCh. 14.4 - Prob. 20SBCh. 14.4 - Prob. 21SBCh. 14.4 - Prob. 22SBCh. 14.4 - Prob. 23SBCh. 14.4 - Prob. 24SBCh. 14.4 - Prob. 25SBCh. 14.4 - Prob. 26SBCh. 14.4 - Prob. 27SBCh. 14.4 - Prob. 28SBCh. 14.4 - Prob. 29SBCh. 14.4 - Prob. 30SBCh. 14.4 - Prob. 31SBCh. 14.4 - f( x )=cosx at 0Ch. 14.4 - Prob. 33SBCh. 14.4 - Prob. 34SBCh. 14.4 - Prob. 35SBCh. 14.4 - Prob. 36SBCh. 14.4 - Prob. 37SBCh. 14.4 - Prob. 38SBCh. 14.4 - Prob. 39SBCh. 14.4 - Prob. 40SBCh. 14.4 - Prob. 41SBCh. 14.4 - Prob. 42SBCh. 14.4 - Prob. 43AECh. 14.4 - Prob. 44AECh. 14.4 - Prob. 45AECh. 14.4 - Prob. 46AECh. 14.4 - Prob. 47AECh. 14.4 - Instantaneous Velocity of a Ball In physics it is...Ch. 14.4 - Instantaneous Velocity on the Moon Neil Armstrong...Ch. 14.4 - Instantaneous Rate of Change The following data...Ch. 14.4 - Prob. 51RYKCh. 14.4 - Prob. 52RYKCh. 14.4 - Prob. 53RYKCh. 14.4 - Prob. 54RYKCh. 14.5 - In Problems 29-32, find the first five terms in...Ch. 14.5 - Prob. 2AYPCh. 14.5 - Prob. 3CVCh. 14.5 - Prob. 4CVCh. 14.5 - Prob. 5SBCh. 14.5 - Prob. 6SBCh. 14.5 - Prob. 7SBCh. 14.5 - Prob. 8SBCh. 14.5 - Prob. 9SBCh. 14.5 - Repeat Problem 9 for f( x )=4x .Ch. 14.5 - Prob. 11SBCh. 14.5 - Prob. 12SBCh. 14.5 - Prob. 13SBCh. 14.5 - Prob. 14SBCh. 14.5 - Prob. 15SBCh. 14.5 - Prob. 16SBCh. 14.5 - Prob. 17SBCh. 14.5 - Prob. 18SBCh. 14.5 - Prob. 19SBCh. 14.5 - Prob. 20SBCh. 14.5 - Prob. 21SBCh. 14.5 - Prob. 22SBCh. 14.5 - Prob. 23SBCh. 14.5 - Prob. 24SBCh. 14.5 - Prob. 25SBCh. 14.5 - Prob. 26SBCh. 14.5 - Prob. 27SBCh. 14.5 - Prob. 28SBCh. 14.5 - Prob. 29SBCh. 14.5 - Prob. 30SBCh. 14.5 - Prob. 31SBCh. 14.5 - Consider the function f( x )= 1 x 2 whose domain...Ch. 14.5 - Graph the function f( x )= log 2 x .Ch. 14.5 - If A=[ 1 2 3 4 ] and B=[ 5 6 0 7 8 1 ] , find AB .Ch. 14.5 - If f( x )=2 x 2 +3x+1 , find f( x+h )f( x ) h and...Ch. 14.5 - Prob. 36RYK
Additional Math Textbook Solutions
Find more solutions based on key concepts
John, Jim, Jay, and Jack have formed a band consisting of 4 instruments if each of the boys can play all 4 inst...
A First Course in Probability (10th Edition)
Find how many SDs above the mean price would be predicted to cost.
Intro Stats, Books a la Carte Edition (5th Edition)
Assessment 1-1A In a big red box, there are 7 smaller blue boxes. In each of the blue boxes, there are 7 black ...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
The four flaws in the given survey.
Elementary Statistics
Standard Normal Distribution. In Exercises 13–16, find the indicated z score. The graph depicts the standard no...
Elementary Statistics (13th Edition)
The table by using the given graph of h.
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Hint: You may use the following derivative rules: ddxsin(x)=cos(x) ddxcos(x)=−sin(x) ddxln(x)=1x Find the equation of the tangent line to the curve y=4sinx at the point (π6,2).The equation of this tangent line isarrow_forwardQuestion Find the following limit. Select the correct answer below: 1 2 0 4 5x lim sin (2x)+tan 2 x→arrow_forward12. [0/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.022. Evaluate the indefinite integral. (Use C for the constant of integration.) sin(In 33x) dxarrow_forward
- 2. [-/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.003.MI. Evaluate the integral by making the given substitution. (Use C for the constant of integration.) x³ + 3 dx, u = x² + 3 Need Help? Read It Watch It Master It SUBMIT ANSWER 3. [-/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.006.MI. Evaluate the integral by making the given substitution. (Use C for the constant of integration.) | +8 sec² (1/x³) dx, u = 1/x7 Need Help? Read It Master It SUBMIT ANSWER 4. [-/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.007.MI. Evaluate the indefinite integral. (Use C for the constant of integration.) √x27 sin(x28) dxarrow_forward53,85÷1,5=arrow_forward3. In the space below, describe in what ways the function f(x) = -2√x - 3 has been transformed from the basic function √x. The graph f(x) on the coordinate plane at right. (4 points) -4 -&- -3 -- -2 4 3- 2 1- 1 0 1 2 -N -1- -2- -3- -4- 3 ++ 4arrow_forward
- 2. Suppose the graph below left is the function f(x). In the space below, describe what transformations are occuring in the transformed function 3ƒ(-2x) + 1. The graph it on the coordinate plane below right. (4 points)arrow_forward1 1. Suppose we have the function f(x) = = and then we transform it by moving it four units to the right and six units down, reflecting it horizontally, and stretching vertically by 5 units. What will the formula of our new function g(x) be? (2 points) g(x) =arrow_forwardSuppose an oil spill covers a circular area and the radius, r, increases according to the graph shown below where t represents the number of minutes since the spill was first observed. Radius (feet) 80 70 60 50 40 30 20 10 0 r 0 10 20 30 40 50 60 70 80 90 Time (minutes) (a) How large is the circular area of the spill 30 minutes after it was first observed? Give your answer in terms of π. square feet (b) If the cost to clean the oil spill is proportional to the square of the diameter of the spill, express the cost, C, as a function of the radius of the spill, r. Use a lower case k as the proportionality constant. C(r) = (c) Which of the following expressions could be used to represent the amount of time it took for the radius of the spill to increase from 20 feet to 60 feet? r(60) - r(20) Or¹(80-30) r(80) - r(30) r-1(80) - r−1(30) r-1(60) - r¹(20)arrow_forward
- 6. Graph the function f(x)=log3x. Label three points on the graph (one should be the intercept) with corresponding ordered pairs and label the asymptote with its equation. Write the domain and range of the function in interval notation. Make your graph big enough to see all important features.arrow_forwardFind the average value gave of the function g on the given interval. gave = g(x) = 8√√x, [8,64] Need Help? Read It Watch Itarrow_forward3. Mary needs to choose between two investments: One pays 5% compounded annually, and the other pays 4.9% compounded monthly. If she plans to invest $22,000 for 3 years, which investment should she choose? How much extra interest will she earn by making the better choice? For all word problems, your solution must be presented in a sentence in the context of the problem.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY