
(a)
Interpretation:
The change in entropy in the given set of reactions has to be explained.
Concept Introduction:
Entropy is a
During a phase transition, if the solid state is changed to liquid state or gaseous state there will be an in increase in entropy in the system. The solid state is having more orderly arrangement than the liquid and gaseous state. Gaseous state, having more possible arrangements of atoms will have the highest order of entropy.
(b)
Interpretation:
The change in entropy in the given set of reactions has to be explained.
Concept Introduction:
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Let us consider the example of diffusion of gas molecule to understand the concept of entropy. When a perfume bottle is opened the fragrance is immediately spread into the surroundings. Inside the bottle the gas molecules are close to each other and entropy is less. Once the bottle is opened the gas molecules escapes into the surroundings and have more disorderly arrangements.
During a phase transition, if the solid state is changed to liquid state or gaseous state there will be an in increase in entropy in the system. The solid state is having more orderly arrangement than the liquid and gaseous state. Gaseous state, having more possible arrangements of atoms will have the highest order of entropy.
(c)
Interpretation:
The change in entropy in the given set of reactions has to be explained.
Concept Introduction:
Entropy is a thermodynamic quantity, which is the measure of randomness in a system. The term entropy is useful in explaining the spontaneity of a process. For all spontaneous process in an isolated system there will be an increase in entropy. Let us consider the example of diffusion of gas molecule to understand the concept of entropy. When a perfume bottle is opened the fragrance is immediately spread into the surroundings. Inside the bottle the gas molecules are close to each other and entropy is less. Once the bottle is opened the gas molecules escapes into the surroundings and have more disorderly arrangements.
During a phase transition, if the solid state is changed to liquid state or gaseous state there will be an in increase in entropy in the system. The solid state is having more orderly arrangement than the liquid and gaseous state. Gaseous state, having more possible arrangements of atoms will have the highest order of entropy.

Want to see the full answer?
Check out a sample textbook solution
Chapter 14 Solutions
EBK CHEMISTRY: ATOMS FIRST
- In the decomposition reaction in solution B → C, only species C absorbs UV radiation, but neither B nor the solvent absorbs. If we call At the absorbance measured at any time, A0 the absorbance at the beginning of the reaction, and A∞ the absorbance at the end of the reaction, which of the expressions is valid? We assume that Beer's law is fulfilled.arrow_forward> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forwardWhat is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward
- 7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forwardIndicate the compound formula: dimethyl iodide (propyl) sulfonium.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





