
(a)
Find the magnitude and line of action of the propulsive thrust developed by the engine when the speed of the airplane is
(a)

Answer to Problem 14.74P
The magnitude of airplane is
The line of action of the propulsive thrust developed by the engine when the speed of the airplane is
Explanation of Solution
Given information:
The mass
The initial velocity
The velocity
Calculation:
Sketch the free body diagram of airplane as shown in Figure 1.
Refer to Figure 1.
Here, F is force that the plane exerts on the air.
Express the force that the plane exerts on air by using impulse momentum principle.
Take a moment about B,
Find the unit mass flow rate from
Here,
Substitute
Find the magnitude (F) of airplane using the relation as follows:
Substitute
Thus, the magnitude of airplane is
Find the line of action of the propulsive thrust developed by the engine when the speed of the airplane is
From Equation (2).
Substitute
Substitute
Thus, the line of action of the propulsive thrust developed by the engine when the speed of the airplane is
(b)
Find the magnitude and line of action of the propulsive thrust developed by the engine when the speed of the airplane is
(b)

Answer to Problem 14.74P
The magnitude of airplane is
The line of action of the propulsive thrust developed by the engine when the speed of the airplane is
Explanation of Solution
Calculation:
Find the magnitude (F) of airplane using the relation as follows:
Substitute
Thus, the magnitude of airplane is
Find the line of action of the propulsive thrust developed by the engine when the speed of the airplane is
Substitute
Thus, the line of action of the propulsive thrust developed by the engine when the speed of the airplane is
Want to see more full solutions like this?
Chapter 14 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I REALLY NEED FBD. The roof truss shown carries roof loads, where P = 10 kN. The truss is consisting of circular arcs top andbottom chords with radii R + h and R, respectively.Given: h = 1.2 m, R = 10 m, s = 2 m.Allowable member stresses:Tension = 250 MPaCompression = 180 MPa1. If member KL has square section, determine the minimum dimension (mm).2. If member KL has circular section, determine the minimum diameter (mm).3. If member GH has circular section, determine the minimum diameter (mm).ANSWERS: (1) 31.73 mm; (2) 35.81 mm; (3) 18.49 mmarrow_forwardPROBLEM 3.23 3.23 Under normal operating condi- tions a motor exerts a torque of magnitude TF at F. The shafts are made of a steel for which the allowable shearing stress is 82 MPa and have diameters of dCDE=24 mm and dFGH = 20 mm. Knowing that rp = 165 mm and rg114 mm, deter- mine the largest torque TF which may be exerted at F. TF F rG- rp B CH TE Earrow_forward1. (16%) (a) If a ductile material fails under pure torsion, please explain the failure mode and describe the observed plane of failure. (b) Suppose a prismatic beam is subjected to equal and opposite couples as shown in Fig. 1. Please sketch the deformation and the stress distribution of the cross section. M M Fig. 1 (c) Describe the definition of the neutral axis. (d) Describe the definition of the modular ratio.arrow_forward
- using the theorem of three moments, find all the moments, I only need concise calculations with minimal explanations. The correct answers are provided at the bottomarrow_forwardMechanics of materialsarrow_forwardusing the theorem of three moments, find all the moments, I need concise calculations onlyarrow_forward
- Can you provide steps and an explaination on how the height value to calculate the Pressure at point B is (-5-3.5) and the solution is 86.4kPa.arrow_forwardPROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forwardFind the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





