Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.2, Problem 14.33P
To determine
Find the work done by the man and woman as each dives from the boat.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Prob. 14.6, determine the work done by the woman and by the man as each dives from the boat, assuming that the woman dives first.Reference to Problem 14.6:
14.6 A 180-lb man and a 120-lb woman stand side by side at the same end
of a 300-lb boat, ready to dive, each with a 16-ft/s velocity relative
to the boat. Determine the velocity of the boat after they have both
dived, if (a) the woman dives first, (b) the man dives first.
A 180-lb man and a 120-lb woman stand at opposite ends of a 300-lb boat, ready to dive, each with a 16-ft/s velocity relative to the boat. Determine the velocity of the boat after they have both dived, if (a) the woman dives first, (b) the man dives first.
Chapter 14 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - Prob. 14.3PCh. 14.1 - Prob. 14.4PCh. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9, assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - Prob. 14.16PCh. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Prob. 14.19PCh. 14.1 - Prob. 14.20PCh. 14.1 - Prob. 14.21PCh. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - Prob. 14.23PCh. 14.1 - Prob. 14.24PCh. 14.1 - Prob. 14.25PCh. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation HO=rmv+HG between the angular...Ch. 14.1 - Prob. 14.28PCh. 14.1 - Prob. 14.29PCh. 14.1 - Show that the relation MA=HA, where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - Prob. 14.33PCh. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Prob. 14.35PCh. 14.2 - Prob. 14.36PCh. 14.2 - Prob. 14.37PCh. 14.2 - 14.38 Two hemispheres arc held together by a cord...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - Prob. 14.41PCh. 14.2 - 14.41 and 14.42 In a game of pool, ball A is...Ch. 14.2 - Prob. 14.43PCh. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - Prob. 14.45PCh. 14.2 - Prob. 14.46PCh. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Prob. 14.49PCh. 14.2 - Three small spheres A, B, and C, each of mass m,...Ch. 14.2 - Prob. 14.51PCh. 14.2 - Prob. 14.52PCh. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Prob. 14.55PCh. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of = 1000 kg/m3...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Prob. 14.59PCh. 14.3 - Prob. 14.60PCh. 14.3 - Prob. 14.61PCh. 14.3 - Prob. 14.62PCh. 14.3 - Prob. 14.63PCh. 14.3 - Prob. 14.64PCh. 14.3 - Prob. 14.65PCh. 14.3 - Prob. 14.66PCh. 14.3 - Prob. 14.67PCh. 14.3 - Prob. 14.68PCh. 14.3 - Prob. 14.69PCh. 14.3 - Prob. 14.70PCh. 14.3 - Prob. 14.71PCh. 14.3 - Prob. 14.72PCh. 14.3 - Prob. 14.73PCh. 14.3 - Prob. 14.74PCh. 14.3 - Prob. 14.75PCh. 14.3 - Prob. 14.76PCh. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - Prob. 14.78PCh. 14.3 - Prob. 14.79PCh. 14.3 - Prob. 14.80PCh. 14.3 - Prob. 14.81PCh. 14.3 - Prob. 14.82PCh. 14.3 - Prob. 14.83PCh. 14.3 - Prob. 14.84PCh. 14.3 - Prob. 14.85PCh. 14.3 - Prob. 14.86PCh. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - Prob. 14.88PCh. 14.3 - Prob. 14.89PCh. 14.3 - Prob. 14.90PCh. 14.3 - Prob. 14.91PCh. 14.3 - Prob. 14.92PCh. 14.3 - A rocket sled burns fuel at the constant rate of...Ch. 14.3 - Prob. 14.94PCh. 14.3 - Prob. 14.95PCh. 14.3 - Prob. 14.96PCh. 14.3 - Prob. 14.97PCh. 14.3 - Prob. 14.98PCh. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb, including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - Prob. 14.102PCh. 14.3 - Prob. 14.103PCh. 14.3 - Prob. 14.104PCh. 14 - Three identical cars are being unloaded from an...Ch. 14 - Prob. 14.106RPCh. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - Prob. 14.108RPCh. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - Prob. 14.110RPCh. 14 - Prob. 14.111RPCh. 14 - Prob. 14.112RPCh. 14 - Prob. 14.113RPCh. 14 - Prob. 14.114RPCh. 14 - Prob. 14.115RPCh. 14 - A chain of length l and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- applieed mechanics 2arrow_forward(14.73) The jet engine shown scoops in air at A at a rate of 90 kg/s and discharges it at B with a velocity of 600 m/s relative to the airplane. Deter- mine the magnitude and line of action of the propulsive thrust developed by the engine when the speed of the airplane is (a) 480 km/h, (b) 960 km/h. 300 "Ꮩ B 4 marrow_forwardProblem 11.2 Two swimmers A and B, of mass 75 kg and 50 kg, respectively, dive off the end of a 200-kg boat. Each swimmer has a relative horizontal velocity of 3 m/s when leaving the boat. If the boat is initially at rest, determine its final velocity, assuming that (a) the two swimmers dive simultaneously, (b) swimmer A dives first, (c) swimmer B dives first. Answers: all velocities will be between 0.75 m/s <|V|< 1.4 m/sarrow_forward
- An 8-oz package is projected upward with a velocity v0 by a spring at A; it moves around a frictionless loop and is deposited at C . For each of the two loops shown, determine (a) the smallest velocity v0 for which the package will reach C, (b) the corresponding force exerted by the package on the loop just before the package leaves the loop at C.arrow_forwardapplieed mechanics 2arrow_forwardPROBLEM 2.9 A stone was dropped freely from a balloon at a height of 250 m. above the ground. The balloon is moving upward at a speed of 40 m/s. Determine the velocity of the stone as it hits the ground. 80.65 m/s 70.65 m/s 9. с. 60.65 m/s d. 50.65 m/s а. b.arrow_forward
- 14.49 Two small spheres A and B, with masses of 2.5 kg and 1 kg, re- spectively are connected by a rigid rod of negligible mass. The two spheres are resting on a horizontal, frictionless surface when A is suddenly given the velocity vo = (3.5 m/s)i. Determine (a) the linear momentum of the system and its angular momentum about its mass center G, (b) the velocities of A and B after the rod AB has rotated through 180°. B 210 mmarrow_forwardAn orbiting satellite has a mass of 5000 kg and is travelling at a constant velocity of V0. To alter its orbit, an attached rocket discharges 100 kg of gases from the reaction of solid fuel at a speed of 3000 m/s relative to the satellite in a direction opposite V0. The fuel discharge rate is constant for 2 s. Determine(a) The thrust exerted on the satellite.(b) The acceleration of the satellite during this 2 s period.(c) The change of velocity of the satellite during this time period.arrow_forwardHome work/2: An orbiting satellite has a mass of 3400 kg and is traveling at a constant velocity of VO. To alter its orbit, an attached rocket discharges 100 kg of gases from the reaction of solid fuel at a speed of 3000 m/s relative to the satellite in a direction opposite VO. The fuel discharge rate is constant for 3s. Determine (a) the thrust exerted on the satellite, (b) the acceleration of the satellite during this 3-s period, and (c) the change of velocity of the satellite during this time period? gas Satellite msatarrow_forward
- A 1-lb stone is dropped down the "bottomless pit at Carlsbad Caverns and strikes the ground with a speed of 95 ft/s. Neglecting air resistance, determine (a) the kinetic energy of the stone as it strikes the ground and the height h from which it was dropped, (b) Solve Part a assuming that the same stone is dropped down a hole on the moon. (Acceleration of gravity on the moon = 5.31 ft/s.)arrow_forwardAn airline employee tosses two suitcases with weights of 30 lb and 40 lb, respectively, onto a 50-lb baggage carrier in rapid succession. Knowing that the carrier is initially at rest and that the employee imparts a 9-ft/s horizontal velocity to the 30-lb suitcase and a 6-ft/s horizontal velocity to the 40-lb suitcase, determine the final velocity of the baggage carrier if the first suitcase tossed onto the carrier is (a) the 30-lb suitcase, (b) the 40-lb suitcase.arrow_forward) Initially at rest, A Mitsubishi Pajero and a Toyota Vios are connected by a tow cable. The winch on the back of the Pajero is turned on and pulls in the tow cable at a constant relative velocity of 2 m/s. If both the 1.25 Mg Vios and the 2.5 Mg Pajero are free to roll, determine: a. The velocities of the jeep and the car at the instant they meet. b. If the tow cable is 5 m long, how long does it take for the vehicles to meet? FE 5marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY