A silicon wafer is doped with 2.50 × 1016 boron atoms/cm3 plus 1.60 × 1016 phosphorus atoms/cm3 at 27°C. Calculate (a) the electron and hole concentrations (carriers per cubic centimeter), (b) the electron and hole mobilities (use Fig. 14.26), and (c) the electrical resistivity of the material.
(a)
The concentration of electrons and holes.
Answer to Problem 73AAP
The concentration of electrons is
The concentration of holes is
Explanation of Solution
Write the expression to calculate the concentration of holes.
Here, concentration of boron atoms is
Write the expression to calculate the concentration of electrons.
Here, the intrinsic carrier concentration is
Conclusion:
Substitute
Substitute
Thus, the concentration of electrons is
Thus, the concentration of holes is
(b)
The electron and hole motilities.
Answer to Problem 73AAP
The mobility of electrons is
The mobility of holes is
Explanation of Solution
Conclusion:
Refer to the Figure-14.26, “The effect of total ionized impurity concentration on the mobility of charge carriers in silicon at room temperature.” to obtain the value of total impurity concentration as
Refer to the Figure-14.26, “The effect of total ionized impurity concentration on the mobility of charge carriers in silicon at room temperature.” to obtain the value of electron mobility at
Thus, the mobility of electrons is
Thus, the mobility of holes is
(c)
The electrical resistivity of the material.
Answer to Problem 73AAP
The electrical resistivity of the material is
Explanation of Solution
Write the expression to calculate the resistivity for p-type semiconductor.
Conclusion:
Substitute
Thus, the electrical resistivity of the material is
Want to see more full solutions like this?
Chapter 14 Solutions
Foundations of Materials Science and Engineering
- Solve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forwardUniversity of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forward
- Solve this and show all of the workarrow_forwardNeed helparrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning