
Problem Solving with C++ (9th Edition)
9th Edition
ISBN: 9780133591743
Author: Walter Savitch
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 8PP
Program Plan Intro
Finding all permutations for a set
Program Plan:
- Include required file.
- Define the structure for node.
- Declare elements in “vector” type.
- Declare variable for next value in “NodeValue” type.
- Declare function for display permutations.
- Declare function for compute permutations with recursively.
- Declare function for display vector elements of set.
- Define main function.
- Call the function “displayPermutations” with one parameter.
- Define function “displayPermutations”.
- Create a pointer for node.
- Declare the set in “vector” type.
- Fill the set with first “n” whole elements.
- Call the function “displayVectorElements” to print the
vectors . - Then compute the permutation for given set by calling the function “recursivePermutations”.
- Performs “while” loop. This loop executes until the pointer is equal to “NULL”.
- Display the values in set by calling the function “displayVectorElements”.
- Then delete and move to the next value.
- Define function “recursivePermutations”.
- This function is used to returns a list holding all of the permutations of the given list of elements.
- In this function, first assign the pointer list to “NULL”.
- Then performs base case if the size of the vector element is “1”. Otherwise performs recursive case.
- Compute the permutations for smaller set of elements by recursively call the function “recursivePermutations”.
- Define function “displayVectorElements”.
- This function is used to display the elements of set.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Explian thiS C program
#include<stdio.h>
int countSetBits(int n) { int count = 0; while (n) { count += n & 1; n >>= 1; } return count;}
int main() { int num; printf("Enter a number: "); scanf("%d", &num); printf("Output: %d units\n", countSetBits(num)); return 0;}
Please provide the Mathematica code
Explian this C program code.
#include <stdio.h>
void binary(unsigned int n) {
if (n /2!=0) {
binary(n /2);
}
printf("%d", n %2);
}
int main() {
unsignedint number =33777;
unsignedchar character ='X';
printf("Number: %u\n", number);
printf("Binary: ");
binary(number);
printf("\nDecimal: %u\nHexadecimal: 0x%X\n\n", number, number);
printf("Character: %c\n", character);
printf("ASCII Binary: ");
binary(character);
printf("\nASCII Decimal: %u\nASCII Hexadecimal: 0x%X\n", character, character);
return0;
}
Chapter 14 Solutions
Problem Solving with C++ (9th Edition)
Ch. 14.1 - Prob. 1STECh. 14.1 - Prob. 2STECh. 14.1 - Prob. 3STECh. 14.1 - Prob. 4STECh. 14.1 - Prob. 5STECh. 14.1 - If your program produces an error message that...Ch. 14.1 - Write an iterative version of the function cheers...Ch. 14.1 - Write an iterative version of the function defined...Ch. 14.1 - Prob. 9STECh. 14.1 - Trace the recursive solution you made to Self-Test...
Ch. 14.1 - Trace the recursive solution you made to Self-Test...Ch. 14.2 - What is the output of the following program?...Ch. 14.2 - Prob. 13STECh. 14.2 - Redefine the function power so that it also works...Ch. 14.3 - Prob. 15STECh. 14.3 - Write an iterative version of the one-argument...Ch. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Write a recursive version of the search function...Ch. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - The formula for computing the number of ways of...Ch. 14 - Write a recursive function that has an argument...Ch. 14 - Prob. 3PPCh. 14 - Prob. 4PPCh. 14 - Prob. 5PPCh. 14 - The game of Jump It consists of a board with n...Ch. 14 - Prob. 7PPCh. 14 - Prob. 8PP
Knowledge Booster
Similar questions
- Design a dynamic programming algorithm for the Longest Alternating Subsequence problem described below: Input: A sequence of n integers Output: The length of the longest subsequence where the numbers alternate between being larger and smaller than their predecessor The algorithm must take O(n²) time. You must also write and explain the recurrence. Example 1: Input: [3, 5, 4, 1, 3, 6, 5, 7, 3, 4] Output: 8 ([3, 5, 4, 6, 5, 7, 3, 4]) Example 2: Input: [4,7,2,5,8, 3, 8, 0, 4, 7, 8] Output: 8 ([4, 7, 2, 5, 3, 8, 0,4]) (Take your time with this for the subproblem for this one)arrow_forwardDesign a dynamic programming algorithm for the Coin-change problem described below: Input: An amount of money C and a set of n possible coin values with an unlimited supply of each kind of coin. Output: The smallest number of coins that add up to C exactly, or output that no such set exists. The algorithm must take O(n C) time. You must also write and explain the recurrence. Example 1: Input: C24, Coin values = = [1, 5, 10, 25, 50] Output: 6 (since 24 = 10+ 10+1+1 +1 + 1) Example 2: Input: C = 86, Coin values = [1, 5, 6, 23, 35, 46, 50] Output: 2 (since 86 = 46+35+5)arrow_forwardDesign a dynamic programming algorithm for the Longest Common Subsequence problem de- scribed below Input: Two strings x = x1x2 xm and y = Y1Y2... Yn Output: The length of the longest subsequence that is common to both x and y. . The algorithm must take O(m n) time. You must also write and explain the recurrence. (I want the largest k such that there are 1 ≤ i₁ < ... < ik ≤ m and 1 ≤ j₁ < ... < jk ≤ n such that Xi₁ Xi2 Xik = Yj1Yj2 ··· Yjk) Example 1: Input: x = 'abcdefghijklmnopqrst' and y = 'ygrhnodsh ftw' Output: 6 ('ghnost' is the longest common subsequence to both strings) Example 2: Input: x = 'ahshku' and y = ‘asu' Output: 3 ('asu' is the longest common subsequence to both strings)arrow_forward
- Design a dynamic programming algorithm for the problem described below Input: A list of numbers A = = [a1,..., an]. Output: A contiguous subsequence of numbers with the maximum sum. The algorithm must take O(n) time. You must also write and explain the recurrence. (I am looking for an i ≥ 1 and k ≥ 0 such that a + ai+1 + ···ai+k has the largest possible sum among all possible values for i and k.) Example 1: Input: A[5, 15, -30, 10, -5, 40, 10]. Output: [10, 5, 40, 10] Example 2: Input: A = [7, 5, 7, 4, -20, 6, 9, 3, -4, -8, 4] Output: [6,9,3]arrow_forwardDesign a dynamic programming algorithm for the Longest Increasing Subsequence problem described below: Input: A sequence of n integers Output: The length of the longest increasing subsequence among these integers. The algorithm must take O(n²) time. You must also write and explain the recurrence. Example 1: Input: [5, 3, 6, 8, 4, 6, 2, 7, 9, 5] Output: 5 ([3, 4, 6, 7, 9]) Example 2: Input: [12, 42, 66, 73, 234, 7, 543, 16] Output: 6 ([42, 66, 73, 234, 543])arrow_forwardDesign a dynamic programming algorithm for the Subset Sum problem described below: Input: A set of n integers A and an integer s Output: A subset of A whose numbers add up to s, or that no such set exists. The algorithm must take O(n·s) time. You must also write and explain the recurrence. Example 1: Input: A = {4, 7, 5, 2, 3}, s = 12 Output: {7,2,3} Example 2: Input: A{4, 7, 5,3}, s = 6 Output: 'no such subset'arrow_forward
- TECNOLOGIE DEL WEB 2023/2023 (VER 1.1) Prof. Alfonso Pierantonio 1. Project Requirements The project consists in designing and implementing a Web application according to the methodology and the technologies illustrated and developed during the course. This document describe cross-cutting requirements the application must satisfy. The application must be realized with a combination of the following technologies: PHP MySQL HTML/CSS JavaScript, jQuery, etc templating The requirements are 2. Project size The application must have at least 18 SQL tables The number of SQL tables refers to the overall number of tables (including relation normalizations). 3. Methodology The application must be realized by adopting separation of logics, session management, and generic user management (authentication/permissions). Missing one of the above might correspond to a non sufficient score for the project. More in details: 3.1 Separation of Logics The separation of logics has to be realizse by using…arrow_forwardWrite a C program to calculate the function sin(x) or cos(x) using a Taylor series expansion around the point 0. In other words, you will program the sine or cosine function yourself, without using any existing solution. You can enter the angles in degrees or radians. The program must work for any input, e.g. -4500° or +8649°. The function will have two arguments: float sinus(float radians, float epsilon); For your own implementation, use one of the following relations (you only need to program either sine or cosine, you don't need both): Tip 1: Of course, you cannot calculate the sum of an infinite series indefinitely. You can see (if not, look in the program) that the terms keep getting smaller, so there will definitely be a situation where adding another term will not change the result in any way (see problem 1.3 – machine epsilon). However, you can end the calculation even earlier – when the result changes by less than epsilon (a pre-specified, sufficiently small number, e.g.…arrow_forwardWrite a C program that counts the number of ones (set bits) in the binary representation of a given number. Example:Input: 13 (binary 1101)Output: 3 unitsarrow_forward
- I need help to resolve or draw the diagrams. thank youarrow_forwardYou were requested to design IP addresses for the following network using the addressblock 166.118.10.0/8, connected to Internet with interface 168.118.40.17 served by the serviceprovider with router 168.118.40.1/20.a) Specify an address and net mask for each network and router interface in the table provided. b) Give the routing table at Router 1.c) How will Router 1 route the packets with destinationi) 168.118.10.5ii) 168.118.10.103iii) 168.119.10.31iii) 168.118.10.153arrow_forwardI would like to get help to draw an object relationship diagram for a typical library system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT

Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning