Concept explainers
Interpretation: The Lewis structure, molecular structure, expected hybridization of central Cl atom in
Concept Introduction:
Lewis dot structure is the representation which shows the bonding between atoms present in a molecule. It shows lone pairs and bond pairs that existing on each bonded atom. Lewis dot structure is also known as Lewis dot formula or electron dot structure.
The sum of valence electrons must be arranged in such a way that all atoms must get octet configuration (8 electrons).
The polarity of molecule is determined with the help of presence of polar bond and symmetrical geometry.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
EBK CHEMICAL PRINCIPLES
- 4. Among the known dioxygen species (O2+, O2, O2− and O22−), which is expected to have the shortest bond length? O2+ O2 O2− O22−arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardNitrosyl azide, N4O, is a pale yellow solid first synthesized in 1993. Write the Lewis structure for nitrosyl azide.arrow_forward
- Draw the Lewis structure of FeCl3.6H2O and FeCl2.4H2O.arrow_forwardA nonmetal like oxygen forms both ionic and covalent bonds, depending on the identity of the element to which it bonds. What type of bonding is observed in CaO and CO 2? Explain why two different types of bonding are observed.arrow_forwardSelenium tetrafluoride, SeF₄, is a colorless liquid that is used as a fluorinating reagent in organic synthesis. Based on your Lewis structure for SeF₄, how many electron domains are on the central atom?arrow_forward
- Predict the shape of SiF4,SF4 and XeF4 molecules. Explain why the shapes differ.arrow_forwardUsing Lewis symbols and Lewis structures, diagram the formation of SiCl4 from Si and Cl atoms.arrow_forwardThe halogens form a class of compounds called the interhalogens, in which halogen atoms covalently bond to each other. Write the Lewis structures for the interhalogens BrCl3 and ICl4−.arrow_forward
- Explain formation of covalent bonds in the following chemical compounds (using three theories). SO? · HF CC4. C:BrzH2 . H2 CO3.arrow_forwardBased on the bond energies for the reaction below, what is the enthalpy of the reaction? HC≡CH (g) + 5/2 O₂ (g) → 2 CO₂ (g) + H₂O (g)arrow_forwardHow do you draw the lewis structure of BN2? Boron, nitrogenarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning