(II) Tall buildings are designed to sway in the wind. In a 100-km/h wind, for example, the top of the 110-story Sears Tower oscillates horizontally with an amplitude of 15 cm. The building oscillates at its natural frequency, which has a period of 7.0 s. Assuming SHM , find the maximum horizontal velocity and acceleration experienced by a Sears employee as she sits working at her desk located on the top floor. Compare the maximum acceleration (as a percentage) with the acceleration due to gravity.
(II) Tall buildings are designed to sway in the wind. In a 100-km/h wind, for example, the top of the 110-story Sears Tower oscillates horizontally with an amplitude of 15 cm. The building oscillates at its natural frequency, which has a period of 7.0 s. Assuming SHM , find the maximum horizontal velocity and acceleration experienced by a Sears employee as she sits working at her desk located on the top floor. Compare the maximum acceleration (as a percentage) with the acceleration due to gravity.
(II) Tall buildings are designed to sway in the wind. In a 100-km/h wind, for example, the top of the 110-story Sears Tower oscillates horizontally with an amplitude of 15 cm. The building oscillates at its natural frequency, which has a period of 7.0 s. Assuming SHM, find the maximum horizontal velocity and acceleration experienced by a Sears employee as she sits working at her desk located on the top floor. Compare the maximum acceleration (as a percentage) with the acceleration due to gravity.
Definition Definition Special type of oscillation where the force of restoration is directly proportional to the displacement of the object from its mean or initial position. If an object is in motion such that the acceleration of the object is directly proportional to its displacement (which helps the moving object return to its resting position) then the object is said to undergo a simple harmonic motion. An object undergoing SHM always moves like a wave.
Please solve and answer this problem correctly please. Thank you!!
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.