Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 76P
You move at speed u toward a wave source that’s stationary with respect to the medium in which waves of wavelength λ propagate with speed v. Your speed relative to the wave crests is therefore v + u. Show that for you, the time between wave crests is T = λ/(v + u), and from this show that you perceive a frequency given by Equation 14.16, with the + sign.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 2: You are hiking along a trail in a wide, dry canyon where the outdoor temperature is T = 25.5° C. To determine how far you are away from the canyon wall you yell “Hello” and hear the echo t = 1.95 s later.Randomized Variables
T = 25.5° Ct = 1.95 s
Part (a) Calculate the speed of sound in the valley in meters per second, assuming the speed at 0° C is 332 m/s.Numeric : A numeric value is expected and not an expression.v = __________________________________________Part (b) How far are you from the canyon wall, in meters?Numeric : A numeric value is expected and not an expression.D = __________________________________________Part (c) If you stood at the same point on a cold morning where the temperature was T2 = -5.5 degrees C, how long would it have taken for you to hear the echo, in seconds?Numeric : A numeric value is expected and not an expression.t2 = __________________________________________
Chapter 17, Problem 059 SN
x Incorrect.
A French submarine and a U.S. submarine move toward each other during maneuvers in motionless
water in the North Atlantic (see the figure). The French sub moves at speed vF, and the U.S. sub at
speed vus. The French sub sends out a sonar signal (sound wave in water) at frequency f. Sonar
waves travel at speed v. (a) What is the signal's frequency as detected by the U.S. sub? (b) What
frequency is detected by the French sub in the signal reflected back to it by the U.S. sub? State
your answers in terms of the given variables.
French
U.S.
VF
VUS
(a) fus =
レーV」
v+Vf
(b) fr =
f ..
On a 20°C°C night, a bat hovering in the air emits an ultrasonic chirp that has a
frequency of 45 kHzkHz. It hears an echo 60 msms later.
Suppose the object is an insect flying straight away from the bat. What is the
insect's speed if the ultrasonic echo is shifted down in frequency by 750 Hz?
Chapter 14 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Explain how you can determine whether fault N is older or younger than igneous intrusion J.
Applications and Investigations in Earth Science (9th Edition)
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardChapter 17, Problem 059 SN A French submarine and a U.S. submarine move toward each other during maneuvers in motionless water in the North Atlantic (see the figure). The French sub moves at speed ve , and the U.S. sub at speed vus- The French sub sends out a sonar signal (sound wave in water) at frequency f. Sonar waves travel at speed v. (a) What is the signal's frequency as detected by the U.S. sub? (b) What frequency is detected by the French sub in the signal reflected back to it by the U.S. sub? State your answers in terms of the given variables. French U.S. VF V US (a) fus = 2 Edit (b) ff = 2Editarrow_forwardEx. 35: A simple harmonic progressive wave of amplitude 2 mm and frequency 500 Hz travels with a velocity of 350 m/s in given medium. Write down the equation of the wave in S.I. units.arrow_forward
- Problem 1: You are hiking along a trail in a wide, dry canyon where the outdoor temperature is T = 29.5° C. To determine how far you are away from the canyon wall you yell "Hello" and hear the echo t = 2.4 s later. Randomized Variables T = 29,5° C t = 2.4 s Part (a) Calculate the speed of sound in the valley in meters per second, assuming the speed at 0° C is 332 m/s. Numeric : A numeric value is expected and not an expression. V = Part (b) How far are you from the canyon wall, in meters? Numeric : A numeric value is expected and not an expression. D = Part (c) If you stood at the same point on a cold morning where the temperature was T2 = -4.5 degrees C, how long would it have taken for you to hear the echo, in seconds? Numeric : A numeric value is expected and not an expression. t2arrow_forwardThe wave y (x,t) = Asin (kx − wt + (lambda sign)) has an amplitude of 0.245 cm and a period of 85.2 ms. What is the maximum particle velocity? Answer in m / s.arrow_forwardHorseshoe bats use the Doppler effect to determine their location. A Horseshoe bat flies toward a wall at a speed of 15.0 m/s while emitting a sound of frequency 19.6 kHz. What is the beat frequency between the emission frequency and the echo? The speed of sound at T = 20°C is v = 343 m/s. (See Appendix B Table B.5.)arrow_forward
- A traveling wave along the x-axis is given by the following wave functionψ(x, t) = 4.8 cos(1.2x - 8.2t + 0.54), where x in meter, t in seconds, and ψ in meters. Read off the appropriate quantities for this wave function and find the following characteristics of this plane wave. What is the frequency in Hertz, the wavelength in meters, the wave speed in meters per second, and the phase constant in radiansarrow_forwardThe period of oscillation T of a water surface wave isassumed to be a function of density ρ , wavelength l , depth h , gravity g , and surface tension Y . Rewrite this relationshipin dimensionless form. What results if Y is negligible?Hint: Take l , ρ , and g as repeating variables.arrow_forwardAs we said, sound waves can be modeled with sine waves. The standard musical pitch is the A440 which means that the musical note A4 has a frequency of 440 Hz. So this note oscillates once every seconds and it could be modeled using the curve y = sin(440- 2nt) = sin(880nt). For each of the following musical notes, what would w be if we wanted to model the sound wave with y = sin(wt)? !! %3D (a) (i) C4, (261.63 Hz (iii) E4, (329.63 Hz) (v) G4, (392 Hz) (ii) D4, (293.66 Hz) (iv) F4, (349.23 Hz) (vi) B4, (493.88 Hz)arrow_forward
- A capillary wave is a wave traveling across the surface of a fluid that is driven by the surface tension within the fluid. The speed v of a capillary wave depends on the density of the fluid ?ρ , the wavelength of the wave ?λ, and the surface tension ?σ . The SI units of surface tension are J/m2. The capillary wave speed can be written as ?=???????v=kσaρbλc , where k is some unitless constant. What must be the value of c?arrow_forwarddocs.google.com/forms/d/e/1Ff o Two sinusoidal waves of wavelength A = 2/3 m and amplitude A = 6 cm and differing with their phase constant, are travelling to the right with same velocity v = 50 m/s. The resultant wave function y_res (x,t) will have the form: y_res (x,t) = 12(cm) cos(4/2) sin(3Tx+150rt+p/2). y_res (x,t) = 12(cm) cos(4/2) sin(150Ttx+3nt+p/2). y_res (x,t) = 12(cm) cos(4/2) sin(150ttx- 3nt+p/2). y_res (x,t) = 12(cm) cos(4/2) sin(3tx- 150rtt+p/2). y_res (x,t) = 12(cm) cos(p/2) sin(3tx- 180nt+p/2). العربية الإنجليزية ... +arrow_forwardThere was an accident and NASA engineers are trying to sort out where two of their Mars Rovers (named 'Tango' and 'Foxtrot') have landed. The engineers know that landing site A is much hotter than landing site B. Unfortunately, the only working sensors on Tango and Foxtrot measure the speed of sound. If Tango measures the speed of sound at its landing site as 240 m/s, while Foxtrot measures speed of sound as 258 m/s at its landing site, where has each rover landed? Tango landed at site A while Foxtrot landed at site B. Tango landed at site B while Foxtrot landed at site A. Both Tango and Foxtrot landed at site A. O Both Tango and Foxtrot landed at site B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY