Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 49P
Figure 14.37 shows a wave train consisting of two sine wave cycles propagating along a string. Obtain an expression for the total energy
FIGURE 14.37 Problem 49
in this wave train, in terms of the string tension F, the wave amplitude A, and the wavelength λ.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A wave pulse travels down a slinky. The mass of the slinky is m = 0.91 kg and is initially stretched to a length L = 6.3 m. The wave pulse has an amplitude of A = 0.23 m and takes t = 0.448 s to travel down the stretched length of the slinky. The frequency of the wave pulse is f = 0.42 Hz.
(a) What is the speed of the wave pulse?
(b) What is the tension in the slinky?
(c) What is the average speed of a piece of the slinky as a complete wave pulse passes?
(d) What is the wavelength of the wave pulse?
One end of a clothesline is given a sinusoidal motion with a frequency of 5.0 Hz and an amplitude of 0.010m. At the time t=0, the end has a zero displacement and is moving in the +y direction. The speed of the wave is 10.0 m/s. What is the mave number, the wavelength and the angular frequency?
A string of mass 3 g and length 1 m can carry a wave of 20 mW power. The amplitude of the wave is 2.25 mm. What is the tension applied to the string if it oscillates with a period of 40 ms.
Chapter 14 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
Choose the best answer to each of the following. Explain your reasoning. About how many galaxies are there in a...
Cosmic Perspective Fundamentals
Q1. What is the empirical formula of a compound with the molecular formula
Chemistry: A Molecular Approach (4th Edition)
FOCUS ON INFORMATION In Bateslan mimicry, a palatable species gains protection by mimicking an unpalatable one....
Campbell Biology in Focus (2nd Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardA sinusoidal transverse wave has a wavelength of 2.8 m. It takes 0.1 s for an element of the string at a position xx to move from the maximum position of yymax = 0.03 m to the equilibrium position yy = 0. What is the period of the wave, TT, and the wave speed, vv?arrow_forwardA string consists of two parts attached at x=0. The right part of the string has mass per unit length 12.8 g/m and the left part has mass per unit length 3.2g/m. The string tension is T. If a wave of amplitude 3.5cm travels along the left part of the string, what is the amplitude of the wave that is transmitted to the right part of the string?arrow_forward
- Asaparrow_forwardProblem #027. A sewing machine's needle point moves in SMH at a frequency of 2.30 Hz. At t = zero, the needle point is at a distance of 1.00cm and the velocity is -12.0 cm/s. Illustrate the problem.arrow_forwardA string is attached from one end to a vibrator and from the other end to a block of mass m = 2 kg. The power delivered to produce a wave on this string is P = 5 W. Assume that the block is replaced by a %3D lighter one with a mass m' = 0.5 kg. Determine the new power P' required to generate a wave with the same amplitude and frequency. O P' = 10 W %3D P' = 1.25 W P' = 5 W O P' = 2.5 W P' = 20 W %3Darrow_forward
- A guitar string of length L = 1.01 m is oriented along the x-direction and under a tension of T = 79 N. The string is made of steel which has a density of ρ = 7800 kg / m3. The radius of the string is r = 4.7 x 10-4 m. A transverse wave of amplitude A = 0.0020 m is formed on the string. Calculate the mass per unit length μ of the guitar string in kg / m. Calculate the velocity (in m/s) of a traveling transverse wave on the guitar string. Assume a form y1 = A sin(α) for the transverse displacement of the string. Enter an expression for α of a transverse wave on a string traveling along the positive x-direction in terms of its wavenumber k, the position x, its angular frequency ω, and the time t?arrow_forwardA harmonic wave travels down a string under 60 N of tension with a mass per unit length of 0.400 kg/m. The wave has an amplitude of 3.00 cm, and a wavelength of 1.40 m. What is the average power transferred by the wave? (Give your answer in W.)arrow_forwardA guitar string of length L = 0.71 m is oriented along the x-direction and under a tension of T = 92 N. The string is made of steel which has a density of ρ = 7800 kg / m3. The radius of the string is r = 8.9 x 10-4 m.A transverse wave of amplitude A = 0.0020 m is formed on the string. Calculate the mass per unit length μ of the guitar string in kg/m.arrow_forward
- A 125 cm length of string has mass 2.00 g and tension 7.00 N. (a) What is the wave speed for this string? (b) What is the lowest resonant frequency of this string?arrow_forwardNeed help with the following question. A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of w = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - wt). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with w = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and w, for the original wave, as well as k and w the reflected wave and the transmitted wave.arrow_forwardJust need to be shown parts (a) and (b) Problem 12: A guitar string of length L = 0.99 m is oriented along the x-direction and under a tension of T = 118 N. The string is made of steel which has a density of ρ = 7800 kg / m3. The radius of the string is r = 9.4 x 10-4 m. A transverse wave of amplitude A = 0.0020 m is formed on the string. Part (a) Calculate the mass per unit length μ of the guitar string in kg / m. Part (b) Calculate the velocity (in m/s) of a traveling transverse wave on the guitar string. Part (c) Assume a form y1 = A sin(α) for the transverse displacement of the string. Enter an expression for α of a transverse wave on a string traveling along the positive x-direction in terms of its wavenumber k, the position x, its angular frequency ω, and the time t? α = k x - ω t ✔ Correct! Part (d) Assume a form y2 = A sin(α) for the transverse displacement of the string. Write an expression for α of a transverse wave on a string traveling along the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY