Essential University Physics: Volume 1 (3rd Edition)
3rd Edition
ISBN: 9780321993724
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 11FTD
To determine
The reason for seeing a perfectly clear piece of glass in perfectly clear water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The surface of water in contact with
glass wall is
(a)
Plane
(b)
Concave
(c)
Convex
(d)
Both 'b' and 'c'
3. A converging lens with a focal length of 12 cm is placed at the center of a flat-end
cylindrical glass tube of length 24 cm. The lens forms an insulated, airtight seal that creates
two chambers of equal volume, and is free to slide like a piston within the cylinder. A mole
of helium is injected into the left chamber, and a mole of molecular (diatomic) hydrogen is
injected into the right chamber, and both chambers of gas are at the same temperature. A
coordinate system with the lens at x = 0 has been introduced to simplify calculations (see
"before" picture below).
you
before
(T₁=T2, lens at x=0, image at x=-84cm)
x=-12cm
He
x=0cm
H₂
x=+12cm
after
(U₁=U₂, lens at x=?, image at x=?)
x=-12cm
He
x=0cm
H₂
x = +12cm
With the equal-volume chambers enclosing equal numbers of moles of ideal gases at equal
temperatures, the pressures must also be equal, which means the lens/piston doesn't move.
You look through the left end of this cylinder at an object that is on the right side of the…
Physics Question
Chapter 14 Solutions
Essential University Physics: Volume 1 (3rd Edition)
Ch. 14.1 - A boat bobs up and down on a water wave, moving 2...Ch. 14.2 - The figure shows snapshots of two waves...Ch. 14.3 - Two identical stars are different distances from...Ch. 14.4 - Your band needs a new guitar amplifier, and the...Ch. 14.5 - Light shines through two small holes into a dark...Ch. 14.6 - Youre holding one end of a taut rope, and you cant...Ch. 14.7 - A string 1 m long is clamped tightly at one end...Ch. 14.8 - In Fig. 14.35, which is moving faster in relation...Ch. 14 - What distinguishes a wave from an oscillation?Ch. 14 - Red light has a longer wavelength than blue light....
Ch. 14 - Prob. 3FTDCh. 14 - As a wave propagates on a string, the string moves...Ch. 14 - If you doubled the tension in a string, what would...Ch. 14 - A heavy cable is hanging vertically, its bottom...Ch. 14 - Prob. 7FTDCh. 14 - Medical ultrasound uses frequencies around 107 Hz,...Ch. 14 - If you double the pressure of a gas while keeping...Ch. 14 - Water is about a thousand times more dense than...Ch. 14 - Prob. 11FTDCh. 14 - When a wave source moves relative to the medium, a...Ch. 14 - Why can a boat easily produce a shock wave on the...Ch. 14 - Ocean waves with 18-m wavelength travel at 5.3...Ch. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - Prob. 17ECh. 14 - A seismograph located 1250 km from an earthquake...Ch. 14 - Medical ultrasound waves travel at about 1500 m/s...Ch. 14 - An ocean wave has period 4.1 s and wavelength 10.8...Ch. 14 - Find the (a) amplitude, (b) wavelength, (c)...Ch. 14 - Ultrasound used in a medical imager has frequency...Ch. 14 - Prob. 23ECh. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - A transverse wave 1.2 cm in amplitude propagates...Ch. 14 - A transverse wave with 3.0-cm amplitude and 75-cm...Ch. 14 - Prob. 28ECh. 14 - Prob. 29ECh. 14 - Show that P/ from Equation 14.9 has the units of...Ch. 14 - Find the sound speed in air under standard...Ch. 14 - Timers in sprint races start their watches when...Ch. 14 - The factor for nitrogen dioxide (NO2) is 1.29....Ch. 14 - A gas with density 1.0 kg/m3 and pressure 81 kN/m2...Ch. 14 - Prob. 35ECh. 14 - Youre flying in a twin-engine turboprop aircraft,...Ch. 14 - Prob. 37ECh. 14 - A 2.0-m-long string is clamped at both ends. (a)...Ch. 14 - When a stretched string is clamped at both ends,...Ch. 14 - A string is clamped at both ends and tensioned...Ch. 14 - A crude model of the human vocal tract treats it...Ch. 14 - A car horn emits 380-Hz sound. If the car moves at...Ch. 14 - A fire stations siren is blaring at 85 Hz. Whats...Ch. 14 - A fire trucks siren at rest wails at 1400 Hz;...Ch. 14 - Red light emitted by hydrogen atoms at rest in the...Ch. 14 - Figure 14.36 shows a simple harmonic wave at time...Ch. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Figure 14.37 shows a wave train consisting of two...Ch. 14 - A loudspeaker emits energy at the rate of 50 W,...Ch. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - A wire is under 32.8-N tension, carrying a wave...Ch. 14 - A spring of mass m and spring constant k has an...Ch. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Figure 14.38 shows two observers 20 m apart on a...Ch. 14 - An ideal spring is stretched to a total length L1....Ch. 14 - Prob. 60PCh. 14 - You see an airplane 5.2 km straight overhead....Ch. 14 - What are the intensities in W/m2 of sound with...Ch. 14 - Show that a doubling of sound intensity...Ch. 14 - Sound intensity from a localized source decreases...Ch. 14 - At 2.0 in from a localized sound source you...Ch. 14 - The A-string (440 Hz) on a piano is 38.9 cm long...Ch. 14 - Prob. 67PCh. 14 - Youre designing an organ for a new concert hall;...Ch. 14 - Show by differentiation and substitution that a...Ch. 14 - Prob. 70PCh. 14 - Youre a marine biologist concerned with the effect...Ch. 14 - A 2.25-m-long pipe has one end open. Among its...Ch. 14 - Prob. 73PCh. 14 - Obstetricians use ultrasound to monitor fetal...Ch. 14 - Prob. 75PCh. 14 - You move at speed u toward a wave source thats...Ch. 14 - Youre a meteorologist specifying a new Doppler...Ch. 14 - Use a computer to form the sum implied in the...Ch. 14 - Your little sister and her friend build treehouses...Ch. 14 - An airport neighborhood is concerned about the...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...Ch. 14 - Tsunamis are ocean waves generally produced when...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Would the critical angle for a glass—water interface be less than, equal to, or greater than the critical angle for a glass—air interface? Siw?arrow_forwardAround 1965, engineers at the Toro Company invented a gasoline gauge for small engines diagrammed in Figure P25.32. The gauge has no moving parts. It consists of a flat slab of transparent plastic fitting vertically into a slot in the cap on the gas tank. None of the plastic has a reflective coating. The plastic projects from the horizontal top down nearly to the bottom of the opaque tank. Its lower edge is cut with facets making angles of 458 with the horizontal. A lawn mower operator looks down from above and sees a boundary between bright and dark on the gauge. The location of the boundary, across the width of the plastic, indicates the quantity of gasoline in the tank. (a) Explain how the gauge works. (b) Explain the design requirements, if any, for the index of refraction of the plastic. Figure P25.32arrow_forwardThe images show a glass of ice water filled to the brim. Will the water overflow when the ice melts? Explain answer.arrow_forward
- You have just installed a new bathroom in your home. Your shower doors have frosted glass to provide privacy for the person using the shower. The frosted surface is on the outside of the shower door, facing the rest of the bathroom. The frosting is done by acid etching the surface so that lightincident on the rough surface is scattered in all directions. Proud of your new bathroom, you take a photo of it with your smartphone. You notice in the photograph that you can see a reflection of the flash in the shower doors and the reflection is surrounded by a halo of light. Curious, you turn on a laser pointer and aim it at the shower door. Looking closely at the reflection, you again see a halo that consists of a dark area surrounding the reflection of the pointer and then an area of brightness outside this dark ring. You grab a micrometer and a ruler and measure the thickness ofthe glass to be 6.35 mm and the inner radius of the bright halo to be 10.7 mm. From these measurements, you…arrow_forward. Explain with the help of a diagram, why a pencil partly immersed in water appears to be bent at the water surface.arrow_forward46. An air bubble in a glass slab (u=1.5) is 5 cm deep when viewed through one face and 2 cm deep when viewed through the opposite face. What is the thickness of the slab?arrow_forward
- *8.24 A penny lies at the bottom of a water fountain at a depth of 30 cm. Determine the diameter of a piece of paper which, if placed to float on the surface of the water directly above the penny, would totally obscure the penny from view. Treat the penny as a point and assume that n = 1.33 for water.arrow_forwardWithout trying it, how would you know that a diamond will scratch glass?arrow_forwardA 4.00-m-long pole stands vertically in a freshwater lake having a depth of 2.00 m. The Sun is 40.0 above the horizontal. Determine the length of the poles shadow on the bottom of the lake.arrow_forward
- A flint glass, plate rests on the bottom of an aquarium tank. The plate is 8.00 cm thick (vertical dimension) and is covered with a layer of water 12.0 cm deep. Calculate the apparent thickness of the plate as viewed from straight a bow the water.arrow_forwardWhat happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardA 4.00-m-long pole stands vertically in a freshwater lake having a depth of 2.00 m. The Sun is 40.0° above the horizontal. Determine the length of the pole’s shadow on the bottom of the lake.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning