
Concept explainers
(a)
The speed of the bob.
(a)

Explanation of Solution
Introduction:
In the simple pendulum, there is the bob that has mass and is hanged from the string that has the certain length. When the bob is displaced from the equilibrium position the string follows forth and the back motion which is known as the periodic motion.
Write the expression to relate the speed of the bob with the angular speed.
Here,
Write the expression for the angular position with respect to time.
Here,
Differentiate the above equation with respect to time.
Substitute
Write the expression for the velocity.
Here, is the maximum velocity.
Equate equation (2) and (3) for
Solve the above equation for
Write the expression for the angular velocity.
Here,
Substitute
Conclusion:
Thus, the speed of the bob is
(b)
The speed of the bob.
(b)

Explanation of Solution
Introduction:
In the simple pendulum, there is the bob that has mass and is hanged from the string that has the certain length. When the bob is displaced from the equilibrium position the string follows forth and the back motion which is known as the periodic motion.
Write the expression for the conservation for the energy.
Here,
The initial kinetic energy and final potential energy are zero.
Substitute
Write the expression for the kinetic energy.
Here,
Write the expression for the potential energy.
Substitute
Write the expression for the height.
Substitute
Solve the above equation for
Conclusion:
Thus, the speed of the bob is
(c)
The speed of the bob.
(c)

Explanation of Solution
Introduction:
In the simple pendulum, there is the bob that has mass and is hanged from the string that has the certain length. When the bob is displaced from the equilibrium position the string follows forth and the back motion which is known as the periodic motion.
Write the expression for the velocity.
Write the expression for the small angle.
Substitute
Conclusion:
Thus, the speed of the bob is
(d)
The difference in the speeds of the bob.
(d)

Explanation of Solution
Given:
The length is
The angle is
Formula used:
Write the expression for the change in velocity.
Substitute
Calculation:
Substitute
Conclusion:
Thus, the difference in the speed of the bob is
(e)
The difference in the speed of the bob.
(e)

Explanation of Solution
Given:
The length is
The angle is
Formula used:
Write the expression for the change in velocity.
Substitute
Calculation:
Substitute
Conclusion:
Thus, the difference in the velocity of the bob is
Want to see more full solutions like this?
Chapter 14 Solutions
Physics for Scientists and Engineers
- I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forwardQuestion 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardE1 R₁ w 0.50 20 Ω 12 R₁₂ ww ΒΩ R₂ 60 E3 C RA w 15 Ω E2 0.25 E4 0.75 Ω 0.5 Ωarrow_forward
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





