Concept explainers
(a)
The height to which the object eventually rise.
(a)
Explanation of Solution
Given:
The mass of the object is
The length of the object is
The amplitude of the object is
Formula used:
Write the expression for the maximum speed of the object.
Here,
Write the expression for the angular velocity of the object.
Here,
Substitute
Solve the above equation for
When object is at equilibrium position, net force on the object is zero.
Force acting in the
Here,
Solve the above equation for
Substitute
The maximum height of the object is:
Substitute
Calculation:
Substitute
Conclusion:
Thus, the maximum height of the object from the floor is
(b)
The time taken by the object to reach its maximum height.
(b)
Explanation of Solution
Given:
The mass of the object is
The length of the object is
The amplitude of the object is
Formula used:
Write the expression for the time period of the oscillator.
Substitute
The time required by the object will be
Substitute
Calculation:
Substitute
Conclusion:
Thus, the time the object will take to reach the maximum height is
(c)
The minimum initial velocity for the object to be upstretched.
(c)
Explanation of Solution
Given:
The mass of the object is
The length of the object is
The amplitude of the object is
Formula used:
Write the expression for the energy conservation.
Here,
Substitute
Substitute
Solve the above equation for
Calculation:
Substitute
Conclusion:
Thus, the minimum velocity given to the system is
Want to see more full solutions like this?
Chapter 14 Solutions
Physics for Scientists and Engineers
- A block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardConsider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardUse the data in Table P16.59 for a block of mass m = 0.250 kg and assume friction is negligible. a. Write an expression for the force FH exerted by the spring on the block. b. Sketch FH versus t.arrow_forward
- Consider a block of mass 0.200 kg attached to a spring of spring constant 100 N/m. The block is placed on a frictionless table, and the other end of the spring is attached to the wall so that the spring is level with the table. The block is then pushed in so that the spring is compressed by 10.0 cm. Find the speed of the block as it crosses (a) the point when the spring is not stretched, (b) 5.00 cm to the left of point in (a), and (c) 5.00 cm to the right of point in (a).arrow_forwardA simple pendulum as shown in Fig. 4.24 oscillates back and forth. Use the letter designations in the figure to identify the pendulums position(s) for the following conditions. (There may be more than one answer. Consider the pendulum to be ideal with no energy losses.) (a) Position(s) of instantaneous rest ___ (b) Position(s) of maximum velocity ___ (c) Position(s) of maximum Ek ___ (d) Position(s) of maximum Ep ___ (e) Position(s) of minimum Ek ___ (f) Position(s) of minimum Ep ___ (g) Position(s) after which Ek increases ___ (h) Position(s) after which Ep increases ___ (i) Position(s) after which Ek decreases ___ (j) Position(s) after which Ep decreases ___ Figure 4.24 The Simple Pendulum and Energyarrow_forwardA childs pogo stick (Fig. P7.69) stores energy in a spring with a force constant of 2.50 104 N/m. At position (x = 0.100 m), the spring compression is a maximum and the child is momentarily at rest. At position (x = 0), the spring is relaxed and the child is moving upward. At position , the child is again momentarily at rest at the top of the jump. The combined mass of child and pogo stick is 25.0 kg. Although the boy must lean forward to remain balanced, the angle is small, so lets assume the pogo stick is vertical. Also assume the boy does not bend his legs during the motion. (a) Calculate the total energy of the childstickEarth system, taking both gravitational and elastic potential energies as zero for x = 0. (b) Determine x. (c) Calculate the speed of the child at x = 0. (d) Determine the value of x for which the kinetic energy of the system is a maximum. (e) Calculate the childs maximum upward speed. Figure P7.69arrow_forward
- Review. This problem extends the reasoning of Problem 41 in Chapter 9. Two gliders are set in motion on an air track. Glider 1 has mass m1 = 0.240 kg and moves to the right with speed 0.740 m/s. It will have a rear-end collision with glider 2, of mass m2 = 0.360 kg, which initially moves to the right with speed 0.120 m/s. A light spring of force constant 45.0 N/m is attached to the back end of glider 2 as shown in Figure P9.41. When glider 1 touches the spring, superglue instantly and permanently makes it stick to its end of the spring. (a) Find the common speed the two gliders have when the spring is at maximum compression. (b) Find the maximum spring compression distance. The motion after the gliders become attached consists of a combination of (1) the constant-velocity motion of the center of mass of the two-glider system found in part (a) and (2) simple harmonic motion of the gliders relative to the center of mass. (c) Find the energy of the center-of-mass motion. (d) Find the energy of the oscillation.arrow_forwardA block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardCheck Your Understanding Identify one way you could decrease the maximum velocity of a simple harmonic oscillator.arrow_forward
- A block of mass M rests on a table. It is fastened to the lower end of a light, vertical spring. The upper end of the spring is fastened to a block of mass m. The upper block is pushed down by an additional force 3mg, so the spring compression is 4mg/k. In this configuration, the upper block is released from rest. The spring lifts the lower block off the table. In terms of m, what is the greatest possible value for m?arrow_forwardAn inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardCheck Your Understanding Find x(t) for the mass-spring system in Example 8.11 ii the particle starts from x0=0 at t=0. what is the particle’s initial velocity?arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning