Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card
2nd Edition
ISBN: 9781305717633
Author: Steven S. Zumdahl, Susan A. Zumdahl
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 64E

Repeat the procedure in Exercise 61, but for the titration of 25.0 mL of 0.100 M pyridine with 0.100 M hydrochloric acid (Kb for pyridine is 1.7 × 10−9). Do not calculate the points at 24.9 and 25.1 mL.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation: The pH of the solution when 25mL of 0.100M pyridine is titrated with various given volumes of 0.100MHCl and graph between calculated pH and milliliters of NaOH added is to be stated.

Concept introduction: Pyridine is a weak base and HCl is a strong acid. When mixed together in a solution, neutralization reaction takes place with the formation of a salt and water molecule.

Concept introduction: Pyridine is a weak base and HCl is a strong acid. When mixed together in a solution, neutralization reaction takes place with the formation of a salt and water molecule.

Answer to Problem 64E

Answer

  • The pH when 0.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 9.11_.
  • The pH when 4.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 5.92_.
  • The pH when 8.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 5.53_.
  • The pH when 12.5mLof0.100MHCl is added to 25mLof0.100Mpyridine is 5.2_.
  • The pH when 20.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 4.6_.
  • The pH when 24.5mLof0.100MHCl is added to 25mLof0.100Mpyridine is 3.82_.
  • The pH when 25.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 0.05_.
  • The pH when 26.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 2.71_.
  • The pH when 28.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 2.24_.
  • The pH when 30.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 2.04_.

Explanation of Solution

Explanation

Given

The value of Kb for pyridine is 1.7×109.

At 0.0mL, addition of HCl to the 25mLof0.100Mpyridine, the concentration of pyridinium ion at equilibrium is calculated by using ICE (Initial Change Equilibrium) table.

C5H5N+H2OC5H5NH++OHInitial(M):0.10000Change(M):xxxEquilibrium(M):0.100xxx

The value of base dissociation constant at equilibrium is calculated by the formula.

Kb=[Concentrationofproducts][Concentrationofreactants]

Therefore, for the above reaction the value of base dissociation constant at equilibrium is,

Kb=[C5H5NH+][OH][C5H5N]

Substitute the values of concentration of reactants, products and Kb in the above expression.

1.7×109×109=x×x0.100xx2+1.7×1091.7×1010=0x=0.000013

Hence, the value of [OH] is 0.000013M

The ionic-product of water is,

[H+][OH]=1.0×1014

Substitute the value of [OH] in the above expression.

[H+]×0.000013=1.0×1014[H+]=1.0×10140.000013[H+]=7.69×1010M

The value of pH is calculated by the formula.

pH=log[H+]

Substitute the value of [H+] in the above expression.

pH=log[7.69×1010]pH=9.11_

At 4.0mL, addition of HCl to the 25mLof0.100Mpyridine, the concentration of pyridinium ion at equilibrium is calculated by using the stoichiometry of the reaction.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.00040NumberofMolesafterthereaction0.002100.0004

The value of pH is calculated by the Henderson-Hasselbalch equation.

pH=pKa+log[Base][Acid]

Where,

  • pKa is negative logarithm of Ka.
  • pH is power of [H+].
  • [Base] is concentration of base after the reaction.
  • [Acid] is concentration of acid before the reaction.

The standard value of pKa for pyridine is 5.2.

Substitute the values of concentration of base, acid and pKa in the above expression.

pH=5.2+log[0.00210.0004]pH=5.92

At 8.0mL, addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using the stoichiometry of the reaction.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.00080NumberofMolesafterthereaction0.001700.0008

The value of pH is calculated by the Henderson-Hasselbalch equation.

pH=pKa+log[Base][Acid]

Where,

  • pKa is negative logarithm of Ka.
  • pH is power of [H+].
  • [Base] is concentration of base after the reaction.
  • [Acid] is concentration of acid before the reaction.

The standard value of pKa for pyridine is 5.2.

Substitute the values of concentration of base, acid and pKa in the above expression.

pH=5.2+log[0.00170.0008]pH=5.53

At 12.5mL, addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using the stoichiometry of the reaction.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.001250NumberofMolesafterthereaction0.0012500.00125

The value of pH is calculated by the Henderson-Hasselbalch equation.

pH=pKa+log[Base][Acid]

Where,

  • pKa is negative logarithm of Ka.
  • pH is power of [H+].
  • [Base] is concentration of base after the reaction.
  • [Acid] is concentration of acid before the reaction.

The standard value of pKa for pyridine is 5.2.

Substitute the values of concentration of base, acid and pKa in the above expression.

pH=5.2+log[0.001250.00125]pH=5.2

At 20.0mL addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using the stoichiometry of the reaction.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.00200NumberofMolesafterthereaction0.00500.0020

The value of pH is calculated by the Henderson-Hasselbalch equation.

pH=pKa+log[Base][Acid]

Where,

  • pKa is negative logarithm of Ka.
  • pH is power of [H+].
  • [Base] is concentration of base after the reaction.
  • [Acid] is concentration of acid before the reaction.

The standard value of pKa for pyridine is 5.2.

Substitute the values of concentration of base, acid and pKa in the above expression.

pH=5.2+log[0.00050.002]pH=4.6

At 24.5mL addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using the stoichiometry of the reaction.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.00240NumberofMolesafterthereaction0.000100.0024

The value of pH is calculated by the Henderson-Hasselbalch equation.

pH=pKa+log[Base][Acid]

Where,

  • pKa is negative logarithm of Ka.
  • pH is power of [H+].
  • [Base] is concentration of base after the reaction.
  • [Acid] is concentration of acid before the reaction.

The standard value of pKa for pyridine is 5.2.

Substitute the values of concentration og base, acid and pKa in the above expression.

pH=5.2+log[0.0010.0025]pH=3.82

At 25.0mL addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using the stoichiometry of the reaction.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.00250NumberofMolesafterthereaction000.0025

At this stage complete consumption of pyridine and HCl takes place with the formation of salt. The strength of the salt is calculated by considering the dissociation reaction of salt formed as.

C5H5NHClC5H5NH++Cl

The concentration of  pyridium ion (C5Hϕ5NH+)=MolesofpyridiumionVolume

Substitute the value of moles and volume in the above expression.

Concentration=0.00250.05Concentration=0.05M

The value of [H+] is calculated by using ICE table at dissociation reaction of pyridium ion.

C5H5NH++H2OH3O++C5H5NInitial(M):0.0500Change(M):yyyEquilibrium(M):0.05yyy

The value of acid dissociation constant at equilibrium is calculated by the formula.

Ka=[Concentrationofproducts][Concentrationofreactants]

Therefore, for the above reaction the value of base dissociation constant at equilibrium is,.

Ka=[C5H5NH+][OH][C5H5N]

The relation,

Ka=KwKb

The value of Kb is 1.7×109.

Substitute the value of Kw and Kb in the above expression.

Ka=1.0×10141.7×109Ka=5.88×106

Substitute the values of concentration of reactants, products and Ka in the Ka  expression.

5.88×106=x×x0.05xx2+5.88×1062.94×107=0x=5.42×104

Hence, the value of [H+] is 0.000013M

The value of pH is calculated by the formula.

pH=log[H+]

Substitute the value of [H+] in the above expression.

pH=log[5.42×104]pH=3.3_

At 26.0mL addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using the stoichiometry of the reaction.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.00260NumberofMolesafterthereaction00.00010.0025

The [H+] value =0.00010.025+0.026=0.00196M

The value of pH is calculated by the formula.

pH=log[H+]

Substitute the value of [H+] in the above expression.

pH=log[0.00196]pH=2.71_

At 28.0mL addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using reaction stoichiometric coefficients.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.00280NumberofMolesafterthereaction00.00030.0025

The [H+] value =0.00030.025+0.026=0.00566M

The value of pH is calculated by the formula.

pH=log[H+]

Substitute the value of [H+] in the above expression.

pH=log[0.00566]pH=2.24_

At 30.0mL addition of HCl to the 25mLof0.100Mpyridine,the concentration of pyridinium ion at equilibrium is calculated by using reaction stoichiometric coefficients.

C5H5N+HClC5H5NHClNumberofMolesbeforethereaction0.00250.0300NumberofMolesafterthereaction00.00050.0025

The [H+] value =0.00050.025+0.030=0.009M

The value of pH is calculated by the formula.

pH=log[H+]

Substitute the value of [H+] in the above expression.

pH=log[0.009]pH=2.04_

The graph between pH and the volumeofHClused is,

Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card, Chapter 14, Problem 64E

Conclusion

Conclusion

  • The pH when 0.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 9.11_.
  • The pH when 4.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 5.92_.
  • The pH when 8.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 5.53_.
  • The pH when 12.5mLof0.100MHCl is added to 25mLof0.100Mpyridine is 5.2_.
  • The pH when 20.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 4.6_.
  • The pH when 24.5mLof0.100MHCl is added to 25mLof0.100Mpyridine is 3.82_.
  • The pH when 25.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 0.05_.
  • The pH when 26.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 2.71_.
  • The pH when 28.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 2.24_.
  • The pH when 30.0mLof0.100MHCl is added to 25mLof0.100Mpyridine is 2.04_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…
In statistical thermodynamics, check the hcv following equality: ß Aɛ = KT
Please correct answer and don't used hand raiting

Chapter 14 Solutions

Bundle: Chemistry: An Atoms First Approach, 2nd, Loose-Leaf + OWLv2, 4 terms (24 months) Printed Access Card

Ch. 14 - What are the major species in solution after...Ch. 14 - Prob. 2ALQCh. 14 - Prob. 3ALQCh. 14 - Prob. 4ALQCh. 14 - Sketch two pH curves, one for the titration of a...Ch. 14 - Prob. 6ALQCh. 14 - Prob. 7ALQCh. 14 - You have a solution of the weak acid HA and add...Ch. 14 - The common ion effect for weak acids is to...Ch. 14 - Prob. 10QCh. 14 - Prob. 11QCh. 14 - Consider the following pH curves for 100.0 mL of...Ch. 14 - An acid is titrated with NaOH. The following...Ch. 14 - Consider the following four titrations. i. 100.0...Ch. 14 - Prob. 15QCh. 14 - Prob. 16QCh. 14 - How many of the following are buffered solutions?...Ch. 14 - Which of the following can be classified as buffer...Ch. 14 - A certain buffer is made by dissolving NaHCO3 and...Ch. 14 - Prob. 20ECh. 14 - Calculate the pH of each of the following...Ch. 14 - Calculate the pH of each of the following...Ch. 14 - Prob. 23ECh. 14 - Compare the percent ionization of the base in...Ch. 14 - Prob. 25ECh. 14 - Calculate the pH after 0.020 mole of HCl is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 14 - Which of the solutions in Exercise 21 shows the...Ch. 14 - Prob. 30ECh. 14 - Calculate the pH of a solution that is 1.00 M HNO2...Ch. 14 - Calculate the pH of a solution that is 0.60 M HF...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 14 - Calculate the pH of each of the following buffered...Ch. 14 - Prob. 36ECh. 14 - Calculate the pH of a buffered solution prepared...Ch. 14 - A buffered solution is made by adding 50.0 g NH4Cl...Ch. 14 - Prob. 39ECh. 14 - An aqueous solution contains dissolved C6H5NH3Cl...Ch. 14 - Prob. 41ECh. 14 - Prob. 42ECh. 14 - Consider a solution that contains both C5H5N and...Ch. 14 - Calculate the ratio [NH3]/[NH4+] in...Ch. 14 - Prob. 45ECh. 14 - Prob. 46ECh. 14 - Prob. 47ECh. 14 - Prob. 48ECh. 14 - Calculate the pH of a solution that is 0.40 M...Ch. 14 - Calculate the pH of a solution that is 0.20 M HOCl...Ch. 14 - Which of the following mixtures would result in...Ch. 14 - Prob. 52ECh. 14 - Prob. 53ECh. 14 - Calculate the number of moles of HCl(g) that must...Ch. 14 - Consider the titration of a generic weak acid HA...Ch. 14 - Sketch the titration curve for the titration of a...Ch. 14 - Consider the titration of 40.0 mL of 0.200 M HClO4...Ch. 14 - Consider the titration of 80.0 mL of 0.100 M...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Prob. 60ECh. 14 - Lactic acid is a common by-product of cellular...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Repeat the procedure in Exercise 61, but for the...Ch. 14 - Prob. 65ECh. 14 - In the titration of 50.0 mL of 1.0 M methylamine,...Ch. 14 - You have 75.0 mL of 0.10 M HA. After adding 30.0...Ch. 14 - A student dissolves 0.0100 mole of an unknown weak...Ch. 14 - Prob. 69ECh. 14 - Prob. 70ECh. 14 - Potassium hydrogen phthalate, known as KHP (molar...Ch. 14 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 14 - Prob. 73ECh. 14 - Prob. 74ECh. 14 - Prob. 75ECh. 14 - Prob. 76ECh. 14 - Prob. 77ECh. 14 - Estimate the pH of a solution in which crystal...Ch. 14 - Prob. 79ECh. 14 - Prob. 80ECh. 14 - Prob. 81AECh. 14 - Prob. 82AECh. 14 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 14 - Prob. 84AECh. 14 - You have the following reagents on hand: Solids...Ch. 14 - Prob. 86AECh. 14 - Prob. 87AECh. 14 - What quantity (moles) of HCl(g) must be added to...Ch. 14 - Calculate the value of the equilibrium constant...Ch. 14 - The following plot shows the pH curves for the...Ch. 14 - Calculate the volume of 1.50 102 M NaOH that must...Ch. 14 - Prob. 92AECh. 14 - A certain acetic acid solution has pH = 2.68....Ch. 14 - A 0.210-g sample of an acid (molar mass = 192...Ch. 14 - The active ingredient in aspirin is...Ch. 14 - One method for determining the purity of aspirin...Ch. 14 - A student intends to titrate a solution of a weak...Ch. 14 - Prob. 98AECh. 14 - Prob. 99AECh. 14 - Consider 1.0 L of a solution that is 0.85 M HOC6H5...Ch. 14 - Prob. 101CWPCh. 14 - Consider the following acids and bases: HCO2H Ka =...Ch. 14 - Prob. 103CWPCh. 14 - Prob. 104CWPCh. 14 - Consider the titration of 100.0 mL of 0.100 M HCN...Ch. 14 - Consider the titration of 100.0 mL of 0.200 M...Ch. 14 - Prob. 107CWPCh. 14 - Prob. 108CPCh. 14 - A buffer is made using 45.0 mL of 0.750 M HC3H5O2...Ch. 14 - A 0.400-M solution of ammonia was titrated with...Ch. 14 - Prob. 111CPCh. 14 - Consider a solution formed by mixing 50.0 mL of...Ch. 14 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 14 - Consider the following two acids: In two separate...Ch. 14 - The titration of Na2CO3 with HCl bas the following...Ch. 14 - Prob. 116CPCh. 14 - A few drops of each of the indicators shown in the...Ch. 14 - Malonic acid (HO2CCH2CO2H) is a diprotic acid. In...Ch. 14 - A buffer solution is prepared by mixing 75.0 mL of...Ch. 14 - A 10.00-g sample of the ionic compound NaA, where...Ch. 14 - Prob. 121IPCh. 14 - Prob. 122MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY